Moscow ML Library Documentation
Version 2.00 of June 2000

Sergei Romanenko, Russian Academy of Sciences, Moscow, Russia
Claudio Russo, Cambridge University, Cambridge, United Kingdom
Peter Sestoft, Royal Veterinary and Agricultural University, Copenhagen, Denmark

This document

This manual describes the Moscow ML library, which includes parts of the SML Basis Library and several
extensions. The manual has been generated automatically from the commented signature files.

Alternative formats of this document
Hypertext on the World-Wide Web

The manual is available at http://mosml.org/mosmllib/ for online browsing.

Hypertext in the Moscow ML distribution

The manual is available for offline browsing at mosml/doc/mosmllib/index.html in the distribution.

On-line help in the Moscow ML interactive system

The manual is available also in interactive mosml sessions. Type help "1ib"; for an overview of built-in
function libraries. Type help "fromstring"; for help on a particular identifier, such as fromString.
This will produce a menu of all library structures which contain the identifier fromstring (disregarding
the lowercase/uppercase distinction):

val Bool.fromString |
val Char.fromString |
val Date.fromString |
val Int.fromString |
val Path.fromString |
val Real.fromString |
val String.fromString |
val Time.fromString |
val Word.fromString |
val Word8.fromString |

Choosing a number from this menu will invoke the help browser on the desired structure, e.g. Int.

The Moscow ML home page is http://mosml.org

CONTENTS

Contents

AppleScript
Array
Array?2
ArraySlice
Arraysort
BinlO
Binarymap
Binaryset
Bool

Buffer

Byte
Callback
Char
CharArray
CharArraySlice
CharVector

CharVectorSlice

CommandLine
Date
Dynarray
Dynlib
FileSys
Gdbm
Gdimage
General
Hashset
Help

Int

IntInf
Intmap
Intset
Lexing
List
ListPair
Listsort
Location
Math
Meta
Mosml
Mosmlcgi
Mosmlcookie
Msp
Mysql
NJ93
Nonstdio
OS
Option

10
13
14
17
19
21
22
23
24
27
30
31
32
33
34
35
38
39
42
45
48
52
57
59
61
64
65
67
69
71
74
76
77
79
81
85
87
91
92
99
104
106
107
108

PP
Parsing
Path
Polygdbm
Polyhash
Postgres
Process
Random
Rbset
Real
Redblackmap
Regex
SML90
Signal
Socket
Splaymap
Splayset
String
StringCvt
Substring
Susp
TextIO
Time
Timer
Unix
Vector
VectorSlice
Weak
Word
Word8
Word8Array

Word8ArraySlice

Word8Vector

Word8VectorSlice

Index

109
112
114
118
120
122
127
128
129
132
135
137
142
143
145
150
152
154
157
159
163
164
168
170
171
173
175
178
181
184
187
188
189
190
191

2 APPLESCRIPT

Module AppleScript
AppleScript -- Apple MacOS scripting

type OSAID
type OSAerr = int

exception AppleScriptErr of OSAerr * string

val as_compile : string -> OSAID
val as_dispose : OSAID -> unit

val as_run_script : OSAID -> string
val as_run_text : string -> string

These Mac specific functions provide the capability to compile
and run AppleScript programs.

The exception AppleScriptErr is raised in the event of an error.

[as_compile str] compiles AppleScript source code text, returning
an abstract token of type OSAID. This token may be used to run
the script. The token may be used repeatedly until it is returned
with as_dispose or until mosml exits.

[as_dispose tok] disposes of the resources associated with the
OSAID token so that they may be reused by the AppleScript system.
AppleScriptErr is raised upon any attemp to reuse a disposed token.

[as_run_script tok] runs the script associated with the token.
This typically involves AppleEvent communication with other
programs running on the Mac, or networked Macs. The AppleScript
result is returned as a string.

[as_run_text str] compiles and runs the AppleScript source code text,
disposing all resources allocated in the process, and returns the
AppleScript result as a string.

References:
Inside Macintosh: Interapplication Communication, Chapter 10

AppleScript Language Guide English Edition,
available at http://applescript.apple.com/support.html

ARRAY

Module Array

Array -- SML Basis Library

prim_EQtype ’'a array
type "a vector = ’"a Vector.vector

val maxLen : int
val array :int * '_a -> '_a array

val tabulate : int * (int -> '_a) -> ’'_a array
val fromList : ’'_a list -> '_a array

val length "a array -> int

val sub "a array * int -> 'a

val update "a array * int * 'a -> unit

val vector "a array -> 'a vector

val copy : {src: ’"a array, dst: 'a array, di: int} -> unit
val copyVec : {src: 'a vector, dst: 'a array, di: int} -> unit
val find : ("a -> bool) -> 'a array -> 'a option

val exists : ("a => bool) -> "a array -> bool

val all : ("a => bool) -> "a array -> bool

val app : ("a -> unit) -> ’"a array -> unit

val foldl : ('a*'b ->"'b) > 'b > "a array -> 'b

val foldr : ('a*'b ->"'b) > 'b > 'a array > 'b

val modify ("a -> 'a) -> '"a array -> unit

val findi (* 'a => bool) -> "a array -> (int * 'a) option
val appi N * 'a -> unit) -> ’'a array -> unit

val foldli : (int * 'a * 'b -> 'b) -> 'b -> 'a array —> 'b

val foldri o *'a *'b ->'b) -> 'b -> "a array > 'b

val modifyi (* 'a =>'a) -> 'a array -> unit

val collate : ('a * "a -> order) -> ’"a array * ’'a array -> order

["ty array] is the type of one-dimensional, mutable, zero-based
constant-time-access arrays with elements of type 'ty. Type

"ty array admits equality even if 'ty does not. Arrays al and a2
are equal if both were created by the same call to a primitive
(array, tabulate, fromList).

Functions working on a slices (contiguous subsequence) of an array
are found in the ArraySlice structure.

[maxLen] is the maximal number of elements in an array.

[array(n, x)] returns a new array of length n whose elements are all x.
Raises Size if n<0 or n>maxlen.

[tabulate(n, f)] returns a new array of length n whose elements
are £ 0, £1, ..., £ (n-1), created from left to right. Raises
Size if n<0 or n>maxLen.

[fromList xs] returns an array whose elements are those of xs.
Raises Size if length xs > maxLen.

[length a] returns the number of elements in a.

ARRAY

[sub(a, 1)] returns the i’th element of a, counting from 0.
Raises Subscript if i<0 or i>=length a. To make ‘sub’ infix, use
the declaration

infix 9 sub

[update(a, 1, x)] destructively replaces the i’th element of a by x.
Raises Subscript if i<0 or i>=length a.

[copy{src, dst, di}] destructively copies the array src to dst,
starting at index di.
Raises Subscript if di<0, or if di + length src > length dst.

[copyVec{src, dst, di}] destructively copies the vector to dst,
starting at index di.
Raises Subscript if di<0, or if di + Vector.length src > length dst.

[find p a] applies p to each element x of a, from left to right,
until p(x) evaluates to true; returns SOME x if such an x exists,
otherwise NONE.

[exists p a] applies p to each element x of a, from left to right,
until p(x) evaluates to true; returns true if such an x exists,
otherwise false.

[all p a] applies p to each element x of a, from left to right,
until p(x) evaluates to false; returns false if such an x exists,
otherwise true.

[foldl f e a] folds function f over a from left to right. That is,
computes f(a[len-1], f(a[len-2], ..., f(all]l, f(al[0], e)) ...)),
where len is the length of a.

[foldr £ e a] folds function f over a from right to left. That is,
computes f(a[0], f(all], ..., f(al[len-2], f(al[len-1], €e)) ...)),
where len is the length of a.

[app f a] applies f to a[j] for j=0,1,...,length a-1.

[modify f a] applies f to a[j] and updates a[]j] with the result
f(aljl) for j=0,1,...,length a-1.

The following iterators generalize the above ones by passing also
the index j to the function being iterated.

[findi p a] applies f to successive pairs (j, aljl) for 3=0,1,...,n-1,
until p(j, aljl) evaluates to true; returns SOME (j, alj]) if such
a palr exists, otherwise NONE.

[foldli f e a] folds function f over the array from left to right.
That is, computes f(n-1, a[n-1], f(..., £(1, a[l], £(0, al0], e)) ...)).

[foldri f e a] folds function f over the array from right to left.
That is, computes f£(0, a[O], £(1, all], ..., f(n-1, a[n-1], e) ...)).

[appi f a] applies f to successive pairs (j, alj]) for 3=0,1,...,n-1.

[modifyi f a] applies f to (j, aljl) and updates a[j] with the
result £(j, al[jl]) for j=0,1,...,n-1.

[collate cmp (xs, ys)] returns LESS, EQUAL or GREATER according as

ARRAY

xs precedes, equals or follows ys in the lexicographic ordering on
arrays induced by the ordering cmp on elements.

6 ARRAY2
Module Array2
Array2 -- SML Basis Library
eqtype 'a array
datatype traversal = RowMajor | ColMajor
val array : int * int * '_a -> '_a array
val fromList : /_a list list -> '_a array
val tabulate : traversal -> int * int * (int * int -> '_a) -> ’'_a array
val dimensions "a array -> int * int
val nCols : 'a array -> int
val nRows "a array -> int
val sub : 'a array * int * int -> ’a
val update : 'a array * int * int * 'a -> unit
val row : 'a array * int -> 'a Vector.vector
val column : 'a array * int -> 'a Vector.vector
type 'a region = { base : 'a array, row : int, col : int,
nrows : int option, ncols : int option}
val copy : { src : 'a region, dst : ’"a array,
dst_row : int, dst_col : int } -> unit
val app ¢ traversal -> ('a -> unit) -> ’a array -> unit
val modify : traversal -> ('a -> 'a) -> ’"a array -> unit
val fold : traversal -> (a * 'b -> 'b) -> 'b -> "a array -> 'b
val appi : traversal -> (int * int * 'a -> unit) -> ’'a region -> unit
val modifyi : traversal -> (int * int * 'a -> 'a) -> 'a region -> unit
val foldi : traversal -> (int * int * 'a * 'b -> 'b) > 'Db

-> "a region -> 'b

["ty array] is the type of two-dimensional, mutable, zero-based
constant-time-access arrays with elements of type ’ty.

Type 'ty array admits equality even if 'ty does not. Arrays al and a2
are equal if both were created by the same call to one of the
primitives array, fromList, and tabulate.

[traversal] is the type of traversal orders: row major or column major.

[RowMajor] specifies that an operation must be done in row-major
order, that is, one row at a time, from top to bottom, and from
left to right within each row. Row-major traversal visits the
elements of an (m,n)-array with m rows and n columns in this
order:

i r | PR ,
(lro)r (lr]—)/ (112)1 LN (1In71)l

that is, in order of lexicographically increasing (i, j). In
Moscow ML, row-major traversal is usually faster than column-major
traversal.

[ColMajor] specifies that an operation must be done in column-major
order, that is, one column at a time, from left to right, and from
top to bottom within each column. Column-major traversal visits

ARRAY2

the elements of an (m,n)-array with m rows and n columns in this
order:

14 (r AR r
)/ (2/1)1 RN (m_lll)l
that is, in order of lexicographically increasing (j, 1).

[array(m, n, x)] returns a new m * n matrix whose elements are all x.
Raises Size if n<0 or m<0.

[fromList xss] returns a new array whose first row has elements
xsl, second row has elements xs2, ..., where xss = [xsl,xs2,...,xXxsm].
Raises Size if the lists in xss do not all have the same length.

[tabulate RowMajor (m, n, f)] returns a new m-by-n array whose
elements are £(0,0), £(0,1), ..., £(0, n-1),
f(llo)l f(l,l), c ey f(l, n—l),

£(m-1,0), ..., fim-1, n-1)
created in row-major order: £(0,0), £(0,1), ..., £(1,0), £(1,1),
Raises Size if n<0 or m<O0.

[tabulate ColMajor (m, n, f)] returns a new m-by-n array whose
elements are as above, but created in the column-major order:
£(0,0), £(1,0), ..., £(0, 1), £(1, 1), ... Raises Size if n<0 or m<O0.

[dimensions a] returns the dimensions (m, n) of a, where m is the
number of rows and n the number of columns.

[nCols a] returns the number of n of columns of a.

[nRows a] returns the number of m of rows of a.

[sub(a, 1, Jj)] returns the i’th row’s j’th element, counting from 0.
Raises Subscript if i<0 or j<0 or i>=m or j>=n

where (m,n) = dimensions a.

[update(a, 1, J, x)] destructively replaces the (i,7)’th element of a
by x. Raises Subscript if i<0 or j<0 or i>=m or j>=n

where (m,n) = dimensions a.

[row (a, 1)] returns a vector containing the elements of the ith
row of a. Raises Subscript if i < 0 or i >= height a.

[column (a, Jj)] returns a vector containing the elements of the jth
column of a. Raises Subscript if j < 0 or j >= width a.

[app RowMajor f a] applies f to the elements a[0,0], a[0,1], ...,
al0,n-1], all1,0], ..., a[m-1, n-1] of a, where (m, n) = dimensions a.
[app ColMajor f a] applies f to the elements a[0,0], a[l,0], ...,
a[n-1,0], af0,1], all1,1], ..., a[m-1, n-1] of a, where (m, n) =

dimensions a.

[modify RowMajor f a] applies f to the elements af0,0], a[0,1],
., al0,n-11, af1,0], ..., alm-1, n-1] of a, updating each element
with the result of the application, where (m, n) = dimensions a.

[modify ColMajor f a] applies f to the elements af0,0], a[l,0],
., a[n-1,0], af0,1], all,1], ..., alm-1, n-1] of a, updating each
element with the result of the application, where (m, n) =

dimensions a.

[fold RowMajor f b a] folds f left-right and top-down over the
elements of a in row-major order. That is, computes

f(a[m-1, n-1], f(a[m-1, n-2], ..., f£(a[0,1], £(a[0,0], b))
where (m, n) = dimensions a.

[fold ColMajor f b a] folds f left-right and top-down over the

elements of a in column-major order. That is, computes
f(a[lm-1, n-1], f(a[m-2, n-1], ..., f(all,0], £(al0,0], b))

where (m, n) = dimensions a.

The following iterators generalize the above ones in two ways:

* the indexes 1 and j are also being passed to the function;
* the iterators work on a region (submatrix) of a matrix.

[region] is the type of records { base, row, col, nrows, ncols }
determining the region or submatrix of array base whose upper left
corner has index (row, col).

)

)

ARRAY?2

If nrows = SOME r, then the region has r rows: row, rowt+l, ..., rowtr-1.

If nrows = NONE, then the region extends to the bottom of the matrix.

The field ncols similarly determines the number of columns.

A region is valid for an array with dimensions (m, n) if
(1) either nrows = NONE and 0 <= row <= m
or nrows = SOME r and 0 <= row <= row + r <=m
and (2) either ncols = NONE and 0 <= col <= n
or ncols = SOME c and 0 <= col <= col + ¢ <= n.

[appl RowMajor f reg] applies f to (i, j, ali, Jj]) in order of

lexicographically increasing (i, Jj) within the region reg. Raises
Subscript if reg is not valid. Note that app tr f a is equivalent
to appi tr (f o #3) {base=a, row=0, col=0, nrows=NONE, ncols=NONE}

[appi ColMajor f reg] applies f to (i, Jj, ali, j]) in order of
lexicographically increasing (j, i) within the region reg. Raises
Subscript if reg is not valid.

[modifyi RowMajor f reqg)] applies f to (i, j, ali, jl) in order of
lexicographically increasing (i, Jj) within the region reg. Raises

Subscript if reg is not valid. Note that modify tr f a is equivalent

to modifyi (f o #3) {base=a, row=0, col=0, nrows=NONE, ncols=NONE})

[modifyi ColMajor f req)] applies f to (i, j, ali, j]) in order of
lexicographically increasing (j, i) within the region reg. Raises
Subscript if reg is not valid.

[foldi RowMajor f b a] folds f over (i, j, ali, j]) in row-major
order within the region reg, that is, for lexicographically
increasing (i, j) in the region. Raises Subscript if reg is not
valid.

[foldi ColMajor f b a] folds f over (i, Jj, ali, j]) in column-major
order within the region reg, that is, for lexicographically
increasing (j, i) in the region. Raises Subscript if reg is not
valid.

[copy { src, dst, dst_row, dst_col }] copies the region determined

ARRAY2

by src to array dst such that the upper leftmost corner of src is
copied to dst[dst_row, dst_col]. Works correctly even when src and
dst are the same and the source and destination regions overlap.
Raises Subscript if the src region is invalid, or if src translated
to (dst_row, dst_col) is invalid for dst.

10

ARRAYSLICE

Module ArraySlice

ArraySlice -- SML Basis Library

type "a slice

val length "a slice -> int

val sub "a slice * int -> 'a

val update "a slice * int * 'a -> unit

val slice "a Array.array * int * int option -> ’a slice

val full "a Array.array -> ’'a slice

val subslice "a slice * int * int option -> ’a slice

val base : 'a slice -> 'a Array.array * int * int

val vector "a slice -> ’"a Vector.vector

val copy {src: "a slice, dst: ’"a Array.array, di: int} -> unit

val copyVec {src: ’a VectorSlice.slice, dst: 'a Array.array, di: int}
-> unit

val isEmpty : 'a slice -> bool

val getItem : 'a slice -> ('a * 'a slice) option

val find : ("a => bool) -> 'a slice -> ’"a option

val exists : ("a => bool) -> ’"a slice -> bool

val all : ("a —> bool) -> "a slice -> bool

val app ("a -> unit) -> ’"a slice -> unit

val foldl : ('a*'b > 'b) > 'b -> "a slice > 'b

val foldr : (a*'b > "'b) > 'b -> "a slice > 'b

val modify : (a -> '"a) -> "a slice -> unit

val findi (int * "a -> bool) -> ’'a slice -> (int * ’a) option

val appi : (int * 'a -> unit) -> ’"a slice -> unit

val foldli : (int * 'a * 'b -> 'b) -> b -> 'a slice -> 'b

val foldri : (int * 'a * 'b => 'b) -> 'b -> 'a slice -> 'b

val modifyi (int * 'a => "a) -> 'a slice -> unit

val collate : ('a * 'a -> order) -> ’'a slice * 'a slice -> order

["ty slice] is the type of array slices, that is, sub-arrays.
The slice (a,i,n) is valid if 0 <= i <= i+n <= size s,

or equivalently, 0 <= 1 and 0 <= n and i+n <= size s.
A valid slice sli = (a,i,n) represents the sub-array a[i...i+n-1],
so the elements of sli are a[i], a[i+l], ..., al[i+n-1], and n is
the length of the slice. Only valid slices can be constructed by
the functions below.

[length sli] returns the number n of elements in sli = (s,i,n).

[sub (sli, k)] returns the k’th element of the slice, that is,
a(itk) where sli = (a,i,n). Raises Subscript if k<0 or k>=n.

[update (sli, k, x)] destructively replaces the k’th element of sli
by x. That is, replaces a(k+i) by x, where sli = (a,i,n). Raises
Subscript if i<0 or i>=n.

[slice (a, i, NONE)] creates the slice (a, i, length a-i),
consisting of the tail of a starting at 1i.

Raises Subscript if i<0 or i > Array.length a.

Equivalent to slice (a, i, SOME (Array.length a - i)).

[slice (a, 1, SOME n)] creates the slice (a, i, n), consisting of

ARRAYSLICE 11

the sub-array of a with length n starting at i. Raises Subscript
if i<0 or n<0 or i+n > Array.length a.

slice meaning

(a, 0, NONE) the whole array al0..len-1]
(a, 0, SOME n) a left sub-array (prefix) al0..n-1]
(a, 1, NONE) a right sub-array (suffix) ali..len-1]
(a, i, SOME n) a general slice ali..i+n-1]

[full a] creates the slice (a, 0, length a).
Equivalent to slice(a,0,NONE)

[subslice (sli, i’, NONE)] returns the slice (a, i+i’, n-i’) when
sli = (a,i,n). Raises Subscript if i’ < 0 or i’ > n.

[subslice (sli, i’, SOME n’)] returns the slice (a, i+i’, n’) when
sli = (a,i,n). Raises Subscript if i’ < 0 or n’ < 0 or i’+n’ > n.

[base sli] is the concrete triple (a, i, n) when sli = (a, i, n).

[vector sli] creates and returns a vector consisting of the
elements of the slice, that is, al[i..i+n-1] when sli = (a,i,n).

[copy {src, dst, di}] copies the elements of slice src = (a,i,n),
that is, a[i..i+n-1], to the destination segment dst[di..di+n-1].
Raises Subscript if di<0 or if di+n > length dst. TWorks also if
the array underlying sli is the same as dst, and the slice overlaps
with the destination segment.

[copyVec {src, dst, di}] copies the elements of the vector slice
src = (v,i,n), that is, v[i..i+n-1], to dst[di..di+n-1]. Raises
Subscript if di<0, or if 1len=NONE and di + n > length dst.

[isEmpty sli] returns true if the slice sli = (a,i,n) is empty,
that is, if n=0.

[getItem sli] returns SOME (x, rst) where x is the first element and
rst the remainder of sli, if sli is non-empty; otherwise returns
NONE .

[(find p sli] applies p to each element x of sli, from left to
right, until p(x) evaluates to true; returns SOME x if such an x
exists, otherwise NONE.

[exists p sli] applies p to each element x of sli, from left to right,
until p(x) evaluates to true; returns true if such an x exists,
otherwise false.

[all p sli] applies p to each element x of sli, from left to right,
until p(x) evaluates to false; returns false if such an x exists,
otherwise true.

[app f sli] applies f to all elements of sli = (a,i,n
left to right. That is, applies f to a[j+i] for j=0,

[foldl f e sli] folds function f over sli = (a,i,n) from left to right.
That is, computes f(ali+n-1], f(a[i+n-2],..., f(a[i+l], f(ali]l, €))...)).

[foldr f e sli] folds function f over sli = (a,i,n) from right to left.
That is, computes f(ali], f(al[it+l],..., f(ali+tn-2], f(alitn-1], e))...)).

12

ARRAYSLICE

[modify f sli] modifies the elements of the slice sli = (a,i,n) by
function f. That is, applies f to a[i+j] and updates a[i+j] with
the result f(a[it+]]) for j=0,1,...,n.

The following iterators generalize the above ones by also passing
the index into the array a underlying the slice to the function
being iterated.

[findi p sli] applies p to the elements of sli = (a,i,n) and the
underlying array indices, and returns the least (j, alj]l) for which
p(j, aljl) evaluates to true, if any; otherwise returns NONE. That
is, evaluates p(j, al[j]l) for j=i,..i+n-1 until it evaluates to true
for some j, then returns SOME(7j, al[7j]); otherwise returns NONE.

l[appi f sli] applies f to the slice sli = (a,i,n) and the
underlying array indices. That is, applies f to successive pairs
(j, aljl) for j=i,i+l,...,i+n-1.

[foldli f e sli] folds function f over the slice sli = (a,i,n) and
the underlying array indices from left to right. That is, computes
f(i+n-1, ali+n-1], f(..., £(i+l, a[i+l], f(i, alil, e)) ...)).
[foldri f e sli] folds function f over the slice sli = (a,i,n) and
the underlying array indices from right to left. That is, computes
f(i, alil], f£(i+1, ali+l], ..., f(i+n-1, a[i+n-1], e) ...)).
[modifyi f sli] modifies the elements of the slice sli = (a,i,n) by

applying function f to the slice elements and the underlying array
indices. That is, applies f to (3, al[]j]) and updates a[j] with the
result £(j, aljl) for j=i,i+1,...,1i+n-1.

[collate cmp (slil, sli2)] returns LESS, EQUAL or GREATER according
as slil precedes, equals or follows sli2 in the lexicographic
ordering on slices induced by the ordering cmp on elements.

ARRAYSORT

Module Arraysort

Arraysort -- Quicksort for arrays, from SML/NJ library
val sort : ("a * 'a -> order) -> ’a Array.array —> unit
val sorted : (‘a * 'a -> order) -> 'a Array.array -> bool

13

[sort ordr arr] sorts array arr in-place, using ordering relation ordr.

[sorted ordr arr] returns true if the elements of array arr is
appear in (weakly) increasing order, according to ordering ordr.

14 BINIO

Module BinlO

BinIO -- SML Basis Library

type elem = Word8.word
type vector = Word8Vector.vector

Binary input

type instream

val openln : string -> instream

val closeln : instream -> unit

val input : instream -> vector

val inputAll : instream -> vector

val inputNoBlock : instream -> vector option
val inputl : instream -> elem option
val inputN : instream * int -> vector
val endOfStream : instream -> bool

val lookahead : instream -> elem option

Binary output

type outstream

val openOut : string -> outstream

val openAppend : string -> outstream

val closeOut : outstream -> unit

val output : outstream * vector -> unit
val outputl : outstream * elem -> unit
val flushOut : outstream -> unit

This structure provides input/output functions on byte streams.
The functions are state-based: reading from or writing to a stream
changes the state of the stream. The streams are buffered: output
to a stream may not immediately affect the underlying file or
device.

[instream] is the type of state-based byte input streams.
[outstream] is the type of state-based byte output streams.
[elem] is the type Word8.word of bytes.

[vector] is the type of Word8Vector.vector (byte vectors).

BYTE INPUT:

[openIn s] creates a new instream associated with the file named s.
Raises Io.Io is file s does not exist or is not accessible.

[closeIn istr] closes stream istr. Has no effect if istr is closed
already. Further operations on istr will behave as if istr is at
end of stream (that is, will return "" or NONE or true).

[input istr] reads some elements from istr, returning a vector v of
those elements. The vector will be empty (size v = 0) if and only
if istr is at end of stream or is closed. May block (not return
until data are available in the external world).

BINIO

[inputAll istr] reads and returns the vector v of all bytes
remaining in istr up to end of stream.

[inputNoBlock istr] returns SOME(v) if some elements v can be read
without blocking; returns SOME("") if it can be determined without
blocking that istr is at end of stream; returns NONE otherwise. If
istr does not support non-blocking input, raises
TIo.NonblockingNotSupported.

[inputl istr] returns SOME(e) if at least one element e of istr is
available; returns NONE if istr is at end of stream or is closed;
blocks if necessary until one of these conditions holds.

[inputN(istr, n)] returns the next n bytes from istr as a vector,
if that many are available; returns all remaining bytes if end of
stream is reached before n bytes are available; blocks if necessary
until one of these conditions holds.

[endOfStream istr] returns false if any elements are available in
istr; returns true if istr is at end of stream or closed; blocks if
necessary until one of these conditions holds.

[lookahead istr] returns SOME (e) where e is the next element in the
stream; returns NONE if istr is at end of stream or is closed;
blocks if necessary until one of these conditions holds. Does not
advance the stream.

BYTE OUTPUT:

[openOut s] creates a new outstream associated with the file named
s. If file s does not exist, and the directory exists and is
writable, then a new file is created. 1If file s exists, it is
truncated (any existing contents are lost).

[openAppend s] creates a new outstream associated with the file
named s. If file s does not exist, and the directory exists and is
writable, then a new file is created. 1If file s exists, any
existing contents are retained, and output goes at the end of the
file.

[closeOut ostr] closes stream ostr; further operations on ostr
(except for additional close operations) will raise exception Io.Io.

[output (ostr, v)] writes the byte vector v on outstream ostr.
[outputl (ostr, e)] writes the byte e on outstream ostr.

[flushOut ostr] flushes the outstream ostr, so that all data
written to ostr becomes available to the underlying file or device.
The functions below are not yet implemented:

[setPosIn(istr, i)] sets istr to the position i. Raises Io.Io if
not supported on istr.

[getPosIn istr] returns the current position of istr. Raises Io.Io
if not supported on istr.

15

16

[endPosIn istr] returns the last position of istr.

[getPosOut ostr] returns the current position in stream ostr.
Raises Io.Io if not supported on ostr.

[endPosOut ostr] returns the ending position in stream ostr.
Raises Io.Io if not supported on ostr.

[setPosOut (ostr, i)] sets the current position in stream to ostr to
i. Raises Io.Io if not supported on ostr.

[mkInstream sistr] creates a state-based instream from the
functional instream sistr.

[getInstream istr] returns the functional instream underlying the
state-based instream istr.

[setInstream(istr, sistr)] redirects istr, so that subsequent input
is taken from the functional instream sistr.

[mkOutstream sostr] creates a state-based outstream from the
outstream sostr.

[getOutstream ostr] returns the outstream underlying the
state-based outstream ostr.

[setOutstream(ostr, sostr)] redirects the outstream ostr so that
subsequent output goes to sostr.

BINIO

BINARYMAP

Module Binarymap

Binarymap -- applicative maps as balanced ordered binary trees
From SML/NJ 1ib 0.2, copyright 1993 by AT&T Bell Laboratories
Original implementation due to Stephen Adams, Southampton, UK
type ('key, ’a) dict

exception NotFound

val mkDict ("key * '"key -> order) -> ('key, 'a) dict

val insert ("key, ’'a) dict * 'key * 'a -> ('key, 'a) dict

val find ("key, ’'a) dict * 'key -> 'a

val peek ("key, ’'a) dict * 'key -> 'a option

val remove ("key, 'a) dict * 'key -> ('key, 'a) dict * 'a

val numItems ("key, "a) dict -> int

val listItems : (’'key, ’'a) dict -> ('key * ’'a) list

val app ("key * "a -> unit) -> ('key,’a) dict -> unit

val revapp ("key * "a -> unit) -> ('key,’a) dict -> unit

val foldr ("key * 'a * 'b -> 'b) -> 'b -> ('key,’a) dict -> Db
val foldl ("key * 'a * 'b => 'b) -> 'b -> ('key,’a) dict -> b
val map : ("key * "a => '"b) -> ('key,’a) dict -> ("key, ’'b) dict
val transform : (‘a -> 'b) -> ('key,’a) dict -> (’'key, ’'b) dict

[("key, "a) dict] is the type of applicative maps from domain type
"key to range type 'a, or equivalently, applicative dictionaries
with keys of type ’'key and values of type ’"a. They are implemented
as ordered balanced binary trees.

[mkDict ordr] returns a new, empty map whose keys have ordering
ordr.

[insert (m, i, v)] extends (or modifies) map m to map i to v.

[find(m, k)] returns v if m maps k to v; otherwise raises NotFound.
[peek (m, k)] returns SOME v if m maps k to v; otherwise returns NONE.
[remove (m, k)] removes k from the domain of m and returns the
modified map and the element v corresponding to k. Raises NotFound

if k is not in the domain of m.

[numItems m] returns the number of entries in m (that is, the size
of the domain of m).

[listItems m] returns a list of the entries (k, v) of keys k and
the corresponding values v in m, in order of increasing key values.

[app f m] applies function f to the entries (k, v) in m, in
increasing order of k (according to the ordering ordr used to
create the map or dictionary).

[revapp f m] applies function f to the entries (k, v) in m, in
decreasing order of k.

[foldl f e m] applies the folding function f to the entries (k, V)
in m, in increasing order of k.

[foldr £ e m] applies the folding function f to the entries (k, V)
in m, in decreasing order of k.

18

[map f m] returns a new map whose entries have form (k, f(k,v)),
where (k, v) is an entry in m.

[transform f m] returns a new map whose entries have form (k, f v),
where (k, v) is an entry in m.

BINARYMAP

BINARYSET 19

Module Binaryset

Binaryset -- sets implemented by ordered balanced binary trees
From SML/NJ 1ib 0.2, copyright 1993 by AT&T Bell Laboratories
Original implementation due to Stephen Adams, Southampton, UK

type ’item set

exception NotFound

val empty : ("item * 'item -> order) -> ’'item set

val singleton ¢ ("item * 'item -> order) -> ’item -> ’item set
val add : 'item set * 'item -> 'item set

val addList : 'item set * 'item list -> 'item set

val retrieve : 'item set * 'item -> 'item

val peek : 'item set * 'item -> 'item option

val isEmpty : 'item set -> bool

val equal ¢ 'item set * 'item set -> bool

val isSubset : 'item set * 'item set -> bool

val member : 'item set * 'item -> bool

val delete : 'item set * 'item -> 'item set

val numItems : 'item set -> int

val union : 'item set * 'item set -> ’'item set

val intersection : 'item set * ’item set -> 'item set

val difference : 'item set * 'item set -> ’item set

val listItems : 'item set -> ’item list

val app ¢ ("item -> unit) -> ’item set -> unit

val revapp : ("item -> unit) -> ’'item set -> unit

val foldr : ("item * b -> 'b) -> 'b -> "item set -> Db
val foldl : ("item * b -> 'b) -> 'b -> "item set -> Db
val find ("item -> bool) -> ’item set -> ’item option

["item set] is the type of sets of ordered elements of type ’item.
The ordering relation on the elements is used in the representation
of the set. The result of combining two sets with different
underlying ordering relations is undefined. The implementation
uses ordered balanced binary trees.

[empty ordr] creates a new empty set with the given ordering
relation.

[singleton ordr i] creates the singleton set containing i, with the
given ordering relation.

[add(s, 1)] adds item i to set s.

[addList (s, xs)] adds all items from the list xs to the set s.
[retrieve(s, 1)] returns i if it is in s; raises NotFound otherwise.
[peek(s, 1)] returns SOME i if i is in s; returns NONE otherwise.
[isEmpty s] returns true if and only if the set is empty.

[equal(sl, s2)] returns true if and only if the two sets have the
same elements.

[isSubset (sl, s2)] returns true if and only if sl is a subset of s2.

[member (s, 1)] returns true if and only if i is in s.

20

BINARYSET

[delete(s, 1)] removes item 1 from s. Raises NotFound if i is not in s.
[numItems s] returns the number of items in set s.

[union(sl, s2)] returns the union of sl and s2.

[intersection(sl, s2)] returns the intersectionof sl and s2.

[difference(sl, s2)] returns the difference between sl and s2 (that
is, the set of elements in sl but not in s2).

[listItems s] returns a list of the items in set s, in increasing
order.

l[app f s] applies function f to the elements of s, in increasing
order.

[revapp f s] applies function f to the elements of s, in decreasing
order.

[foldl f e s] applies the folding function f to the entries of the
set in increasing order.

[foldr £ e s] applies the folding function f to the entries of the
set in decreasing order.

[find p s] returns SOME i, where i is an item in s which satisfies
p, if one exists; otherwise returns NONE.

BOOL 21

Module Bool

Bool -- SML Basis Library

datatype bool = datatype bool

val not : bool -> bool

val toString : bool -> string

val fromString : string -> bool option

val scan : (char, ’"a) StringCvt.reader -> (bool, 'a) StringCvt.reader

[bool] is the type of Boolean (logical) values: true and false.
[not b] is the logical negation of b.

[toString b] returns the string "false" or "true" according as b is
false or true.

[fromString s] scans a boolean b from the string s, after possible
initial whitespace (blanks, tabs, newlines). Returns (SOME b) if s
has a prefix which is either "false" or "true"; the value b is the
corresponding truth value; otherwise NONE is returned.

[scan getc src] scans a boolean b from the stream src, using the
stream accessor getc. In case of success, returns SOME (b, rst)
where b is the scanned boolean value and rst is the remainder of
the stream; otherwise returns NONE.

22

BUFFER

Module Buffer

sig
sig

end

nature Buffer =

type buf

val new . int -> buf

val contents : buf -> string

val size : buf -> int

val clear : buf -> unit

val reset : buf -> unit

val addChar : buf -> char -> unit
val addString : buf -> string -> unit

val addSubString : buf -> substring -> unit

concatenation at the end and automatically expand as necessary. It
provides accumulative concatenation of strings in quasi-linear time
(instead of quadratic time when strings are concatenated pairwise).

[new hint] creates a new empty buffer. Raises Size if hint <= 0 or
hint > String.maxSize.

The argument hint is used as the initial size of the internal
string that holds the buffer contents. The internal string is
automatically reallocated as contents is stored in the buffer. For
best performance, hint should be of the same order of magnitude as
the number of characters that are expected to be stored in the
buffer (for instance, 80 for a buffer that holds one output line).
Nothing bad will happen if the buffer grows beyond that limit,
however. 1In doubt, take hint = 16 for instance.

[contents buf] returns the contents of buf.
[size buf] returns the size of the contents of buf.
[clear buf] emptys buf.

[reset buf] emptys buf and shrink the internal string to the
initial hint.

[addChar buf c] appends c at the end of buf.
[addString buf s] appends s at the end of buf.

[addSubString buf ss] appends ss at the end of buf.

BY’

TE 23

Module Byte

Byte -- SML Basis Library

val byteToChar : Word8.word -> Char.char

val charToByte : Char.char -> Word8.word

val bytesToString : Word8Vector.vector -> String.string

val stringToBytes : String.string -> Word8Vector.vector

val unpackStringVec : Word8VectorSlice.slice -> string

val unpackString : Word8ArraySlice.slice -> string

val packString : Word8Array.array * int * Substring.substring -> unit

Conversions between bytes and characters, and between byte vectors
and strings (character vectors).

[byteToChar w] is the character corresponding to the byte w.
[charToByte c] is the byte corresponding to character c.

[bytesToString v] is the string whose character codes are the bytes
from vector v.

[stringToBytes s] is the byte vector of character codes of the string s.

In Moscow ML, all the above operations take constant time. That
is, no copying is done.

[unpackStringVec v] is the string whose character codes are the
bytes from the vector slice v.

[unpackString a] is the string whose character codes are the bytes
from the array slice a.

[packString (a, i, ss)] copies the character codes of substring ss into
the subarray a[i..i+n-1] where n = Substring.size ss. Raises Subscript
if i<0 or i+n > length a.

24 CALLBACK

Module Callback

Callback -- registering ML values with C, and accessing C values from ML
Registering ML values for access from C code:
val register : string -> "a -> unit

val unregister : string -> unit
val isRegistered : string -> bool

Accessing C variables and functions from ML:

type cptr

val getcptr : string -> cptr

val var : cptr -> 'b

val appl : cptr -> ’"al -> 'b

val app2 : cptr -> ’"al -> 'a2 -> 'b

val app3 : cptr => ’al -> 'a2 -> 'a3 -> 'b

val app4 : cptr => 'al -> a2 -> a3 -> 'ad > 'b

val appb : cptr => 'al -> 'a2 -> a3 -> 'ad -> a5 > D

REGISTERING ML VALUES FOR ACCESS FROM C CODE

This example shows how to register the ML function (fn n => 2*n) so
that it may be called from C code.

(0) The ML side registers the function:
Callback.register "myfun" (fn n => 2*n)

(1) The C side first obtains an ML value pointer:
valueptr mvp = get_valueptr ("myfun");

(2) The C side then uses the ML value pointer to obtain an ML
value, and uses it:
callback (get_value (mvp), Val_long(42));

Operation (1) involves a callback to ML, and hence may be slow.
Calling get_valueptr may cause the garbage collector to run; hence
other live ML values must be registered as GC roots. The garbage
collector will never move the ML value pointer; hence it need not
be registered as a GC root in the C code.

Operation (2) is very fast. If the garbage collector is invoked

between the call of get_value() and the use of the ML value, then

the value must be registered as a GC root. However, the idiom
callback (get_value (mvp), argl);

is safe provided the evaluation of argl does not provoke a garbage

collection (e.g. if argl is a variable).

The C function get_valueptr returns NULL if nam is not registered.

The C function get_value returns NULL if nam has been unregistered
(and not reregistered) since mvp was obtained; it raises exception
Fail if mvp itself is NULL. Every access to the ML value from C
code should use the ML valueptr and get_valueptr, otherwise the C
code will not know when the value has been unregistered and
possibly deallocated.

CALLBACK

The C functions (in mosml/src/runtime/callback.c)
void registervalue (char* nam, value mlval)
void unregistervalue (char* nam)
can be used just as Callback.register and Callback.unregister.

The C functions

value callbackptr (valueptr mvp, value argl)

value callbackptr2(valueptr mvp, value argl, value arg2)

value callbackptr3(valueptr mvp, value argl, value arg2, value arg3)
can be used for callback via an ML value pointer; they will raise

exception Fail if the ML function indicated by mvp has been unregistered.

[register nam v] registers the ML value v, so that it can be
retrieved from C code under the name nam. If nam has previously
been registered and then unregistered, it will be reregistered with
the new value. The new value immediately becomes visible to the C
side, both via get_valueptr(nam) and via any ML value pointer
previously obtained for nam. Raises exception Fail if nam has been
registered and not yet unregistered.

[unregister nam] deletes the registration. This prevents C code
from obtaining an ML value pointer for nam and from using an ML
value pointer already obtained (but does not prevent C from
attempting to use a stored ML value previously obtained with the
help of the ML value pointer, which is unsafe anyway). Does
nothing if nam is already unregistered. Raises exception Fail
if nam has never been registered.

[isRegistered nam] returns true if nam has been registered and not
yet unregistered.

ACCESSING REGISTERED C VARIABLES AND FUNCTIONS FROM ML

This example shows how to register the C function

value sillycfun(value v)
{ return copy_double(42.42 * Double_val(v)); }

so that it may be called from ML.

(0) The C side registers the function:
registercptr ("mycfun", sillycfun);

(1) The ML side obtains a C pointer and defines an ML function
via that pointer:
val sillycfun = appl (getcptr "mycfun") : real -> real
The type ascription is needed to ensure any type safety whatsoever.
Mistakes in the types will lead to crashes, as usual with C.

(2) To the ML side, the new ML function is indistinguishable from
other ML functions
val result = sillyfun(3.4)

The C function (in mosml/src/runtime/callback.c)

void registercptr (char* nam, void* cptr);

25

26

is used to register C pointers for access from ML. Only pointers
to static C variables, and C functions, should be registered. There
is no way to unregister a C pointer.

[cptr] 1s the type of pointers to C variables and C functions.
[getcptr nam] returns a pointer to the C variable or function
registered (by the C side) under the name nam. Raises exception

Fail if the name nam has not been registered.

[var cptr] returns the value of the C variable associated with cptr.

[appl cptr argl] applies the C function associated with cptr to argl.

[app2 cptr argl arg2] applies the C function associated with cptr to
(argl, arg2).

[app3 cptr argl arg2 arg3] applies the C function associated with
cptr to (argl, arg2, arg3).

[appd4 cptr argl arg2 arg3 argd4] applies the C function associated
with cptr to (argl, arg2, arg3, arg4).

[appb cptr argl arg2 arg3 arg4 argb] applies the C function
associated with cptr to (argl, arg2, arg3, arg4, argd).

CALLBACK

CHAR

Module Char

27

May raise Chr

May raise Chr
May raise Chr

contains "abcdefghi jklmnopgrstuvwxyz"
contains "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
contains "0123456789"

isUpper orelse isLower

isDigit orelse contains "abcdefABCDEF"
isAlpha orelse isDigit

any printable character (incl. #" ")
contains " \t\r\n\v\f"

printable, not space or alphanumeric
(not isSpace) andalso isPrint

ord c < 128

control character

option ML escape sequences
ML escape sequences

option C escape sequences
C escape sequences

-> bool
-> bool

Char -- SML Basis Library
type char = char

val minChar char

val maxChar char

val maxOrd int

val chr int -> char

val ord char -> int

val succ char -> char

val pred char -> char

val isLower char -> bool
val isUpper char -> bool
val isDigit char -> bool
val isAlpha char -> bool
val isHexDigit char -> bool
val isAlphaNum char -> bool
val isPrint char -> bool
val isSpace char -> bool
val isPunct char -> bool
val isGraph char -> bool
val isAscii char -> bool
val isCntrl char -> bool
val toLower char -> char
val toUpper char -> char
val fromString string -> char
val toString : char -> string
val fromCString : string -> char
val toCString char -> string
val contains string -> char
val notContains string -> char
val < char * char —> bool
val <= char * char —> bool
val > char * char -> bool
val >= char * char -> bool
val compare char * char -> order

[char] is the type of characters.

[minChar] is the least character in the ordering <.

[maxChar] is the greatest character in the ordering <.

[maxOrd] 1is the greatest character code; equals ord(maxChar).

[chr i] returns the character whose code is i. Raises Chr if
i<0 or i>maxOrd.

[ord c] returns the code of character c.

[succ c] returns the character immediately following c, or raises

28

CHAR

Chr if ¢ = maxChar.

[pred c] returns the character immediately preceding c, or raises
Chr if ¢ = minChar.

[isLower c] returns true if ¢ is a lowercase letter (a to z).
[isUpper c] returns true if c is a uppercase letter (A to 7).
[isDigit c] returns true if c is a decimal digit (0 to 9).

[isAlpha c] returns true if c is a letter (lowercase or uppercase).

[isHexDigit c] returns true if c is a hexadecimal digit (0 to 9 or
a to f or A to F).

[isAlphaNum c] returns true if c is alphanumeric (a letter or a
decimal digit).

[isPrint c] returns true if c is a printable character (space or visible)

[isSpace c] returns true if ¢ is a whitespace character (blank, newline,
tab, vertical tab, new page).

[isGraph c] returns true if ¢ is a graphical character, that is,
it is printable and not a whitespace character.

[isPunct c] returns true if c is a punctuation character, that is,
graphical but not alphanumeric.

[isCntrl c¢] returns true if c¢ is a control character, that is, if
not (isPrint c).

[isAscii c¢] returns true if 0 <= ord c <= 127.

[toLower c] returns the lowercase letter corresponding to c,
if ¢ is a letter (a to z or A to Z); otherwise returns c.

[toUpper c] returns the uppercase letter corresponding to c,
if ¢ is a letter (a to z or A to Z); otherwise returns c.

[contains s c] returns true if character c occurs in the string s;
false otherwise. The function, when applied to s, builds a table
and returns a function which uses table lookup to decide whether a
given character is in the string or not. Hence it is relatively
expensive to compute val p = contains s but very fast to compute
p(c) for any given character.

[notContains s c] returns true if character c does not occur in the
string s; false otherwise. Works by construction of a lookup table
in the same way as the above function.

[fromString s] attempts to scan a character or ML escape sequence
from the string s. Does not skip leading whitespace. For
instance, fromString "\\065" equals #"A".

[toString c] returns a string consisting of the character c, if c
is printable, else an ML escape sequence corresponding to c. A
printable character is mapped to a one-character string; bell,
backspace, tab, newline, vertical tab, form feed, and carriage
return are mapped to the two-character strings "\\a", "\\b", "\\t",

CHAR 29

"\\n", "\\v", "\\f", and "\\r"; other characters with code less

than 32 are mapped to three-character strings of the form "\\"z",

and characters with codes 127 through 255 are mapped to

four-character strings of the form "\\ddd", where ddd are three decimal
digits representing the character code. For instance,

toString #"A" equals "A"
toString #"\\" equals "\\\\"
toString #"\"" equals "\\\""
toString (chr 0) equals "\\"@"
toString (chr 1) equals "\\"A"
toString (chr 6) equals "\\"F"
toString (chr 7) equals "\\a"
toString (chr 8) equals "\\b"
toString (chr 9) equals "\\t"
toString (chr 10) equals "\\n"
toString (chr 11) equals "\\v"
toString (chr 12) equals "\\f"
toString (chr 13) equals "\\r"
toString (chr 14) equals "\\"N"
toString (chr 127) equals "\\127"
toString (chr 128) equals "\\128"

[fromCString s] attempts to scan a character or C escape sequence
from the string s. Does not skip leading whitespace. For
instance, fromString "\\065" equals #"A".

[toCString c] returns a string consisting of the character c, if c
is printable, else an C escape sequence corresponding to c. A
printable character is mapped to a one-character string; bell,
backspace, tab, newline, vertical tab, form feed, and carriage
return are mapped to the two-character strings "\\a", "\\b", "\\t",
"\\n", "\\v", "\\f", and "\\r"; other characters are mapped to
four-character strings of the form "\\ooo", where ooo are three
octal digits representing the character code. For instance,

toString #"A" equals "A"
toString #"A" equals "A"
toString #"\\" equals "\\\\"
toString gFrymn equals LARNA
toString (chr 0) equals "\\000"
toString (chr 1) equals "\\0O01"
toString (chr 6) equals "\\006"
toString (chr 7) equals "\\a"
toString (chr 8) equals "\\b"
toString (chr 9) equals "\\t"
toString (chr O) equals "\\n"
toString (chr 11) equals "\\v"
toString (chr 12) equals "\\f"
toString (chr 13) equals "\\r"
toString (chr 14) equals "\\016"
toString (chr 127) equals "\\177"
toString (chr 128) equals "\\200"

] compares character codes. For instance, cl < c2 returns true
ord(cl) < ord(c2), and similarly for <=, >, >=.

[compare(cl, c2)] returns LESS, EQUAL, or GREATER, according as cl is
precedes, equals, or follows c2 in the ordering Char.< .

30

Module CharArray

CharArray -- SML Basis Library

egtype array
type elem = Char.char
type vector = CharVector.vector

val maxLen : int
val array : int * elem -> array

val tabulate : int * (int -> elem) -> array
val fromList : elem list -> array

val length : array -> int

val sub : array * int -> elem

val update : array * int * elem -> unit

val vector : array -> vector

val copy : {src: array, dst: array, di: int} -> unit

val copyVec : {src: vector, dst: array, di: int} -> unit

val find : (elem -> bool) -> array -> elem option

val exists : (elem -> bool) -> array -> bool

val all : (elem -> bool) -> array —> bool

val app (elem -> unit) -> array -> unit

val foldl : (elem * b -> 'b) -> 'b -> array -> 'b

val foldr : (elem * 'b -> 'b) -> 'b -> array -> 'b

val modify : (elem -> elem) -> array -> unit

val findi (int * elem -> bool) -> array -> (int * elem) option
val appi ¢ (int * elem -> unit) -> array -> unit

val foldli : (int * elem * 'b -> 'b) -> 'b -> array -> 'b

val foldri : (int * elem * 'b -> 'b) -> 'b -> array -> 'b

val modifyi (int * elem -> elem) -> array -> unit

val collate : (elem * elem -> order) -> array * array —> order

CHARARRAY

[array] 1is the type of one-dimensional, mutable, zero-based
constant-time-access arrays with elements of type Char.char, that
is, characters. Arrays al and a2 are equal if both were created by
the same call to a primitive, or if both are empty.

All operations are as for Array.array.

CHARARRAYSLICE 31

Module CharArraySlice

CharArraySlice -- SML Basis Library

type elem = char

type array = CharArray.array

type vector = CharVector.vector

type vector_slice = CharVectorSlice.slice

type slice

val length : slice —> int

val sub : slice * int -> elem

val update : slice * int * elem -> unit

val slice : array * int * int option -> slice

val full : array -> slice

val subslice : slice * int * int option -> slice

val base : slice -> array * int * int

val vector : slice -> vector

val copy : {src: slice, dst: array, di: int} -> unit
val copyVec : {src: vector_slice, dst: array, di: int} -> unit
val isEmpty : slice -> bool

val getItem : slice -> (elem * slice) option

val find : (elem -> bool) -> slice -> elem option
val exists : (elem -> bool) -> slice -> bool

val all ¢ (elem -> bool) -> slice -> bool

val app elem -> unit) -> slice -> unit

val foldl elem * 'b -> 'b) -> 'b -> slice -> 'Db

(
N

val foldr : (elem * 'b -> 'b) -> 'b -> slice > 'Db
(

val modify elem -> elem) -> slice -> unit

val findi (int * elem -> bool) -> slice -> (int * elem) option
val appi ¢ (int * elem -> unit) -> slice -> unit

val foldli ¢ (int * elem * 'b -> 'b) —> 'b -> slice > 'Db

val foldri : (int * elem * 'b -> 'b) -> 'b -> slice > 'Db

val modifyi (int * elem -> elem) -> slice -> unit

val collate : (elem * elem -> order) -> slice * slice -> order

[slice] is the type of CharArray slices, that is, sub-arrays of
CharArray.array values.
The slice (a,i,n) is valid if 0 <= i <= i+n <= size s,

or equivalently, 0 <= i and 0 <= n and i+n <= size s.
A valid slice sli = (a,i,n) represents the sub-array afi...i+n-1],
so the elements of sli are a[i], a[i+l], ..., a[i+n-1], and n is
the length of the slice. Only valid slices can be constructed by
the functions below.

All operations are as for ArraySlice.slice.

32 CHARVECTOR

Module CharVector

CharVector -- SML Basis Library

type vector = string
type elem = Char.char

val maxLen : int

val fromList : elem list -> vector
val tabulate : int * (int -> elem) -> vector

val length : vector -> int

val sub : vector * int -> elem

val update : vector * int * elem -> vector

val concat : vector list -> vector

val find : (elem -> bool) -> vector -> elem option
val exists : (elem -> bool) -> vector -> bool

val all : (elem -> bool) -> vector -> bool

val app elem -> unit) -> vector -> unit

2

val map : (elem -> elem) -> vector -> vector
2o
(

val foldl elem * 'b -> 'b) -> b -> vector -> 'b

val foldr elem * 'b -> 'b) -> b -> vector -> 'b

val findi (int * elem -> bool) -> vector -> (int * elem) option
val appi : (int * elem -> unit) -> vector -> unit

val mapi : (int * elem -> elem) —-> vector -> vector

val foldli ¢ (int * elem * 'b -> 'b) -> b -> vector -> 'b

val foldri (int * elem * 'b -> 'b) -> 'b -> vector -> 'Db

val collate : (elem * elem -> order) -> vector * vector -> order

[vector] is the type of one-dimensional, immutable, zero-based
constant-time-access vectors with elements of type Char.char, that
is, characters. Type vector admits equality, and vectors vl and v2
are equal if they have the same length and their elements are
equal. The type vector is the same as String.string.

All operations are as for Vector.vector.

CHARVECTORSLICE 33

Module CharVectorSlice

CharVectorSlice -- SML Basis Library

type elem = Char.char
type vector = CharVector.vector

type slice = Substring.substring

val length : slice —> int

val sub : slice * int -> elem

val slice : vector * int * int option -> slice

val full . vector -> slice

val subslice : slice * int * int option -> slice

val base : slice -> vector * int * int

val vector : slice -> vector

val concat : slice list -> vector

val isEmpty : slice -> bool

val getItem : slice -> (elem * slice) option

val find : (elem -> bool) -> slice -> elem option

val exists : (elem —> bool) -> slice -> bool

val all : (elem —> bool) —-> slice -> bool

val app (elem -> unit) -> slice -> unit

val map (elem -> elem) —-> slice -> vector

val foldl (elem * 'b => 'b) -> 'b -> slice -> 'b

val foldr (elem * 'b => '"b) -> 'b -> slice -> 'b

val findi (int * elem -> bool) -> slice -> (int * elem) option
val appi : (int * elem -> unit) -> slice -> unit

val mapi ¢ (int * elem -> elem) -> slice -> vector

val foldli : (int * elem * 'b -> 'b) -> 'b -> slice -> 'Db
val foldri (int * elem * 'b => 'b) -> 'b -> slice -> 'b
val collate : (elem * elem -> order) -> slice * slice -> order

[slice] is the type of CharVector slices, that is, sub-vectors of
CharVector.vector values. Since a CharVector.vector is a string, a
slice is the same as a substring, and slices may be processed using
the functions defined as well as those in structure Substring.

The slice (a,i,n) is valid if 0 <= i <= i+n <= size s,

or equivalently, 0 <= i and 0 <= n and i+n <= size s.
A valid slice sli = (a,i,n) represents the sub-vector afi...i+n-1],
so the elements of sli are a[i], a[i+l], ..., a[i+n-1], and n is
the length of the slice. Only valid slices can be constructed by
these functions.

All operations are as for VectorSlice.slice.

34 COMMANDLINE

Module CommandLine
CommandLine -- SML Basis Library

val name : unit -> string
val arguments : unit -> string list

[name ()] returns the name used to start the current process.

[arguments ()] returns the command line arguments of the current process.
Hence List.nth(arguments (), 0) is the first argument.

DATE 35

Module Date

Date -- SML Basis Library
datatype weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

datatype month = Jan | Feb | Mar | Apr | May | Jun
| Jul | Aug | Sep | Oct | Nov | Dec

type date
exception Date

val date : {

year : int, e.g. 1999
month : month, Jan, Feb,
day . int, 1-31
hour . int, 0-23
minute : int, 0-59
second : int, 0-61, permitting leap seconds
offset : Time.time option time zone west of UIC
} —> date
val year : date -> int
val month : date -> month
val day : date -> int
val hour : date -> int
val minute : date -> int
val second : date -> int
val weekDay : date -> weekday
val yearDay : date -> int
val isDst : date -> bool option
val offset : date -> Time.time option
val compare : date * date -> order
val toString : date -> string
val fmt : string -> date -> string
val fromString : string -> date option
val scan : (char, 'a) StringCvt.reader -> (date, 'a) StringCvt.reader

val fromTimeLocal : Time.time -> date

val fromTimeUniv : Time.time -> date
val toTime : date -> Time.time
val localOffset : unit -> Time.time

These functions convert times to dates and vice versa, and format
and scan dates.

[date] is the type of points in time in a given time zone. If the
offset is NONE, then the date is in the local time zone. If the
offset is SOME t, then t is the offset of the main timezone
(ignoring daylight savings time) west of UTC.

When 0 hours <= t < 12 hours, the represented time is to the
west of UTC and the local time is UTC-t.

When 12 hours <= t < 23 hours, the represented time is to the
East of UTC and the local time is UTC+(24-t).

[date { year, month, day, hour, minute, second, offset }] returns a
canonical date value. Seconds outside the range 0..59 are

36

DATE

converted to the equivalent minutes and added to the minutes
argument; leap seconds are ignored. Similarly, excess minutes are
converted to hours, hours to days, days to months, and months to
years. Then the weekday and day number in the year are computed.
Leap years are assumed in accordance with the Gregorian calendar,
for any year after year 0 A.D.

If the offset is greater than one day (24 hours), then the excess
days are added to the days, and the offset modulo 24 hours is used.

[year dt] returns the year of dt, e.g. 1999.
[month dt] returns the month of dt.

[day dt] returns the day of dt

[hour dt] returns the hour of dt.

[minute dt] returns the minute of dt.
[second dt] returns the second of dt.
[weekDay dt] returns the weekday of dt.

[yearDay dt] returns the number of the day in the year of dt.
January 1 is day 0, and December 31 is day 364 (and 365 in leap years).

[isDst dt] returns SOME (true) if daylight savings time is in effect
at the date dt; returns SOME (false) if not; and returns NONE if
this information is unavailable.

[offset dt] returns NONE if the date dt is in the local time zone;
returns SOME t where t is the offset west of UTC otherwise. Thus
SOME (Time.zeroTime) is UTC.

[compare(dtl, dt2)] returns LESS, EQUAL, or GREATER, according as
date dtl precedes, equals, or follows dt2 in time.
Lexicographically compares the dates. Ignores timezone offset and
DST. Does not detect invalid dates.

[toString dt] returns a 24 character string representing the date dt
in the following format:

Wed Mar 8 19:06:45 1995
The result may be wrong if the date is not representable as a
Time.time value. Raises Date if dt is an invalid date.
Corresponds to the ANSI C function ‘asctime’.

[fmt fmtstr dt] formats the date dt according to the format string
fmtstr. The format string has the same meaning as with the ANSI C
function ‘strftime’. These ANSI C format codes should work on all
platforms:

abbreviated weekday name (e.g. "Mon")

full weekday name (e.g. "Monday")
abbreviated month name (e.g. "Oct")

full month name (e.g. "October")

date and time (e.g. "Dec 2 06:55:15 1979"
day of month (01..31)

hour (00..23)

hour (01..12)

day of year (001..366)

o\ o\° o° o\° o\° o\° o\° o\° o

- H DO Q Wo o

DATE 37

$m month number (01..12)

%M minutes (00..59)

$p locale’s equivalent of a.m./p.m.

%S seconds (00..61, allowing for leap seconds)

%U week number (00..53), with Sunday as the first day of week 01
sw day of week, with 0 representing Sunday (0..6)

%W week number (00..53), with Monday as the first day of week 01
$x locale’s appropriate date representation

%y year of century (00..99)

%Y vyear including century (e.g. 1997)

%$Z time zone name if it exists; otherwise the empty string

%% the percent character

Example: The current local date in ISO format (e.g. 1998-04-06) can
be obtained by using:
fmt "$Y-%m-%d" (fromTimeLocal (Time.now ()))

[fromString s] scans a 24-character date from the string s, after
possible initial whitespace (blanks, tabs, newlines). The format
of the string must be as produced by toString. The fields isDst
and offset in the resulting date will be NONE. No check of the
consistency of the date (weekday, date in the month, ...) is
performed.

[scan getc src] scans a 24-character date from the stream src,
using the stream accessor getc. Otherwise works as fromString. 1In
case of success, returns SOME (date, rst) where date is the scanned
date and rst is the remainder of the stream; otherwise returns

NONE .

[fromTimeLocal t] returns the local date at (UIC) time t. The
resulting date will have offset = NONE. The fields year, month,
day, hour, minute, and second are as expected. The resulting isDst
may be NONE if the system cannot determine whether daylight savings
time is in effect at the given time. Corresponds to the ANSI C
function ‘localtime’.

[fromTimeUniv t] is similar to fromTime, but returns the UTC date
at (UIC) time t. The resulting date will have offset = SOME
Time.zeroTime. Corresponds to the ANSI C function ‘gmtime’.

[toTime dt] returns the (UTC) time corresponding to the date dt.
Uses the isDst time field if it is present (SOME _) and cannot be
calculated from the given date. May raise Date if the given date
is invalid. Raises Time.Time if the Date cannot be represented as
a Time.time value. At least the dates in the interval 1970-2030
can be represented as Time.time values. Corresponds to the ANSI C
function ‘mktime’.

[localOffset ()] is the local time zone offset west of UTC.
It holds that 0 hours <= localOffset () < 24 hours.

38 DYNARRAY

Module Dynarray
Dynarray -- polymorphic dynamic arrays a la SML/NJ library

type "a array

val array :int * '_a -> '_a array

val subArray : '_a array * int * int -> '_a array
val fromList '_a list * '_a -> '_a array

val tabulate : int * (int -> ’_a) * '_a -> '_a array
val sub "a array * int -> 'a

val update '_a array * int * '_a -> unit

val default "a array -> 'a

val bound "a array -> int

["ty array] is the type of one-dimensional, mutable, zero-based
unbounded arrays with elements of type 'ty. Type 'ty array does
not admit equality.

[array(n, d)] returns a dynamic array, all of whose elements are
initialized to the default d. The parameter n is used as a hint of the
upper bound on non-default elements. Raises Size if n < 0.

[subArray(a, m, n)] returns a new array with the same default
value as a, and whose values in the range [0,n-m] equal the
values in a in the range [m,n]. Raises the exception Size if n < m.

[fromList (xs, d)] returns an array whose first elements are
those of [xs], and the rest are the default d.

[tabulate(n, f, d)] returns a new array whose first n elements
are £ 0, £1, ..., £ (n-1), created from left to right, and whose
remaining elements are the default d. Raises Size if n < 0.

[sub(a, 1)] returns the i’th element of a, counting from 0.
Raises Subscript if i < 0.

[update(a, 1, x)] destructively replaces the i’th element of a by x.
Raises Subscript if i < 0.

[default a] returns the default value of the array a.

[bound a] returns an upper bound on the indices of non-default values.

DYNLIB

Module Dynlib

Dynlib -- dynamic linking with foreign functions

typ
typ

exc

dat
val
val
val

val
val
val
val
val
val

e dlHandle
e symHandle

eption Closed

atype flag = RTLD_LAZY | RTLD_NOW

dlopen : { lib : string, flag : flag, global : bool } -> dlHandle
dlsym : dlHandle -> string —> symHandle

dlclose : dlHandle —-> unit

var : symHandle -> 'b

appl : symHandle -> 'al -> 'b

app2 : symHandle -> 'al -> 'a2 -> b

app3 : symHandle -> 'al -> a2 -> a3 -> 'Db

app4 : symHandle -> 'al -> a2 -> "a3 -> 'a4 -> 'b

appb : symHandle -> 'al -> a2 -> a3 -> a4 -> a5 > b

39

Structure Dynlib provides dynamic loading and calling of C
functions, using the dlfcn interface. A dynamic library is a
collection of symbols (C variables and functions).

An ML value passed to or returned from a symbol has type ‘value’ as
defined in src/runtime/mlvalues.h. The C functions should use the
macroes defined there to access and produce ML values. When
writing a C function, remember that the garbage collector may be
activated whenever you allocate an ML value. Also, remember that
the garbage collector may move values from the young heap to the
old one, so that a C pointer pointing into the ML heap may need to
be updated. Use the Push_roots and Pop_roots macroes to achieve
this.

[dlHandle] is the type of dynamic library handles. A dynamic
library handle is created by opening a dynamic library using
dlopen. This will load the library into the runtime system. The
dynamic library handle is used for accessing symbols in that
library. The library may be closed and removed from the runtime
system using dlclose.

The same library may be opened more than once, resulting in
different library handles. The physical library will be loaded
only once, though, and will remain in the runtime system until all
handles to the library have been closed.

[symHandle] is the type of symbol handles. A symbol handle is used
to access a symbol (variable or function) in the dynamic library,
using the functions var, appl, app2, ..., appb5. Type safety is the
responsibility of the programmer; the runtime system performs no
type checking. Hence you are advised to add explicit types

whenever you define an ML function in terms of var, appl, ..., app5S.

How to create a dynamically loadable library

Assume file "xyz.c" contains your C functions.

To compile xyz.c into xyz.o and then create a dynamic library
libxyz.so from xyz.o:

40

DYNLIB

Under Linux and OSF/1 (Digital Unix):

gcc —-C -0 XYZ.0 Xyz.C

1d -shared -o libxyz.so xyz.o
Under Solaris (ignore the warnings from 1d):

gcc -C -0 XYZ.0 Xyz.C

1d -G -B symbolic -z nodefs -o libxyz.so xyz.o
Under HP-UX:

gcc -fPIC -c -0 Xyz.0 XyZ.C

1d -b -B symbolic -E -o libxyz.so xyz.o

If "xyz.o" depends on another library "libabc.a" you may link the
required functions into libxyz.so just by adding -labc or libabc.a
to the above linker command.

If "xyz.o" depends on another dynamic library "libabc.so" you may
specify this by adding -labc to the above linker command. Then
Dynlib.dlopen will automatically load libabc.so before libxyz.so.

[dlopen { lib, flag, global }] will load and open the library in
file ‘lib’, returning a handle to it. Libraries are usually
specified just by file name, leaving out the directory path.
Linux/Unix-specific information: Libraries are searched for in
those directories mentioned in LD_LIBRARY_PATH, those mentioned in
/etc/ld.so.cache, in /usr/lib and /lib. (Note that
/etc/ld.so.cache is created from /etc/ld.so.conf by running
ldconfig; you must be superuser to do that).

If ‘global’ is true, then the library’s global symbols are
made available for other libraries subsequently loaded.

[flag] is the type of library loading modes: RTLD_LAZY and RTLD_NOW.

[RTLD_LAZY] specifies that only symbol relocations will be
performed when calling dlopen, whereas function relocations will be
performed later when a function is invoked for the first time (if
ever). This is the normal situation.

[RTLD_NOW] specifies that all function relocations must be
performed immediately, also for functions that will never be
called. This checks that all functions are defined, but may waste
some time.

[dlsym dlh nam] returns a symbol handle for the symbol called ‘nam’
in the library associated with dlh. Raises Closed if dlh has been
closed.

[dlclose dlh] closes the library handle and deallocates the library
if there are no more open handles to this library.

The following functions raise Closed if the associated handle has
been closed.

[var sym] returns the value of the C variable associated with sym.
[appl sym argl] applies the C function associated with sym to argl.

[app2 sym argl arg2] applies the C function associated with sym to
(argl, arg2).

[app3 sym argl arg2 arg3] applies the C function associated with

DYNLIB

sym to (argl, arg2, arg3).

[app4 sym argl arg2 arg3 arg4] applies the C function associated
with sym to (argl, arg2, arg3, arg4).

[appb sym argl arg2 arg3 arg4 argb] applies the C function
associated with sym to (argl, arg2, arg3, arg4, argb).

41

42

Module FileSys

OS.FileSys -- SML Basis Library

type dirstream

val openDir : string -> dirstream

val readDir : dirstream -> string option

val rewindDir : dirstream -> unit

val closeDir : dirstream -> unit

val chDir : string -> unit

val getDir : unit -> string

val mkDir : string -> unit

val rmDir : string -> unit

val isDir : string -> bool

val realPath : string —> string

val fullPath : string -> string

val isLink : string -> bool

val readlink : string -> string

val modTime : string —-> Time.time

val setTime : string * Time.time option -> unit
val remove : string -> unit

val rename : {old: string, new: string} -> unit

datatype access_mode = A_READ | A_WRITE | A_EXEC

val access : string * access_mode list -> bool
val fileSize : string -> int
val tmpName : unit -> string

eqtype file_id

val fileld : string -> file_id
val hash : file_id -> word
val compare : file_id * file_id -> order

FILESYS

These functions operate on the file system. They raise 0S.SysErr
in case of errors.

[openDir p] opens directory p and returns a directory stream for
use by readDir, rewindDir, and closeDir. Subsequent calls to
readDir will return the directory entries in some unspecified
order.

[readDir dstr] returns SOME(s), consuming an entry s from the
directory stream if it is non-empty; returns NONE if it is empty

(when all directory entries have been read). Only entries distinct
from the parent arc and the current arc (that is, .. and . in Unig,

DOS, and Windows; see the Path structure) will be returned.

[rewindDir dstr] resets the directory stream as if it had just been

opened.

[closeDir dstr] closes the directory stream. All subsequent
operations on the stream will raise 0S.SysErr.

[chDir p] changes the current working directory to p. This affects

FILESYS 43

calls to the functions use, load, compile in the interactive
system, as well as all functions defined in this library. If p
specifies a volume name, then this command also changes the current
volume (relevant under DOS, Windows, 0S/2, etc.).

[getDir ()] returns the name of the current working directory.
[mkDir p] creates directory p on the file system.

[rmDir p] removes directory p from the file system.

[isDir p] tests whether p is a directory.

[fullPath p] returns a canonical form of path p, where all
occurrences of the arcs ".", "..", "" have been expanded or
removed, and (under Unix) symbollc links have been fully expanded.
Raises SysErr if a directory on the path, or the file or directory
named, does not exist or is not accessible, or if there is a link
loop.

[realPath p] behaves as fullPath(p) if p is absolute. If p is
relative and on the same volume as the current working directory,
it returns a canonical path relative to the current working
directory, where superfluous occurrences of the arcs ".", "..", ""
have been removed, and (under Unix) symbolic links have been fully
expanded. Raises SysErr if a directory on the path, or the file or
directory named, does not exist or is not accessible, or if there
is a link loop. Raises Path if p is relative and on a different
volume than the current working directory.

[isLink p] returns true if p names a symbolic link. Raises SysErr
if the file does not exist or there is an access violation. On
operating systems without symbolic links, it returns false, or
raises SysErr if the file does not exist or there is an access
violation.

[readLink p] returns the contents of the symbolic link p. Raises
SysErr if p does not exist or is not a symbolic link, or there is
an access violation. On operating systems without symbolic links,
it raises SysErr.

[modTime p] returns the modification time of file p.

[setTime (p, tmopt)] sets the modification and access time of file
p. If tmopt is SOME t, then the time t is used; otherwise the
current time, that is, Time.now(), is used.

[remove p] deletes file p from the file system.

[rename {old, new}] changes the name of file ‘old’ to ‘new’.
[access_mode] is the type of access permissions:

[A_READ] specifies read access.

[A_WRITE] specifies write access.

[A_EXEC] specifies permission to execute the file (or directory).

[access (p, accs)] tests the access permissions of file p,
expanding symbolic links as necessary. If the list accs of

44

required access permission is empty, it tests whether p exists. If
accs contains A_READ, A_WRITE, or A_EXEC, respectively, it tests
whether the user process has read, write, or execute permission for
the file.

Under Unix, the access test is done with the ‘real’ user
id and group id (as opposed to the ‘effective’ user id and group
id) of the user process. Hence access("file", [A_READ]) may return
false, yet the file may be readable by the process, in case the
effective user id or group id has been changed by setuid.

[fileSize p] return the size, in bytes, of the file p. Raises SysErr
if p does not exist or its directory is not accessible.

[tmpName ()] returns a file name suitable for creating a fresh
temporary file. ©Note that there is no guarantee that the file name
will be unique, since a file of that name may be created between
the call to tmpName and a subsequent call to openOut which creates
the file. The file name will be absolute, usually of the form
/tmp/xxxxxxxx provided by POSIX tmpnam (3).

[file_id] is the type of unique identities of file system objects
(including device ids and volume ids, but possibly insensitive to
volume changes on removable volumes, such as tapes and diskettes).
The set of file ids is equipped with a total linear order.

[fileId p] returns the file_id of the file system object named by
path p. It holds that filelId pl = fileld p2 if and only if pl and
p2 name the same file system object.

[hash fid] returns a hashvalue for fid, suitable for use in a
hashtable of file ids (and hence files).
If fidl = fid2 then hash fidl = hash fid2.

[compare (fidl, fid2)] returns LESS, EQUAL, or GREATER, according
as fidl precedes, equals, or follows fid2 in the total linear order
on file ids. This is suitable for e.g. an ordered binary tree of
file ids (and hence files).

FILESYS

GDBM 45

Module Gdbm

Gdbm -- GNU gdbm persistent string hashtables -- requires Dynlib
type table
datatype openmode =
READER read-only access (nonexclusive)
| WRITER read/write, table must exist
| WRCREAT read/write, create 1if necessary
| NEWDB read/write, create empty table

typ

exc
exc
exc
exc
exc

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val

e datum = string

eption NotFound
eption AlreadyThere
eption NotWriter

eption Closed
eption GdbmError of string

withtable : string * openmode -> (table -> "a) -> 'a
withtables : (string * openmode) list -> (table list -> 'a) -> 'a
add : table -> datum * datum -> unit

insert : table -> datum * datum -> unit

find : table -> datum -> datum

peek : table -> datum -> datum option

hasKey : table -> datum -> bool

remove : table -> datum -> unit

listKeys : table -> datum list

numItems : table -> int

listItems : table -> (datum * datum) list

app : (datum * datum -> unit) -> table -> unit

map : (datum * datum -> "a) -> table -> 'a list

fold ¢ (datum * datum * 'a -> 'a) -> 'a -> table -> 'a
fastwrite : bool ref

reorganize : table -> unit

[table] is the type of an opened table. A value of type table can
be used only in the argument f to the withtable function. This
makes sure that the table is closed after use.

[openmode] is the type of opening modes. Read-only access (READER)
is non-exclusive; read/write access (WRITER, WRCREAT, NEWDB) 1is
exclusive.

[withtable (nam, mod) f] first opens the table db in file nam with
mode mod, then applies f to db, then closes db. Makes sure to
close db even if an exception is raised during the evaluation of
f(db). Raises GdbmError with an informative message in case the
table cannot be opened. E.g. the table cannot be opened for
reading if already opened for writing, and cannot be opened for
writing if already opened for reading.

A table is only guaranteed to work properly if created by withtable
using open modes WRCREAT or NEWDB. If you create a table by
creating and then opening an empty file, then numItems, listKeys,
listItems, etc. will raise an exception.

[withtables nammod f], where nammod = [(naml, modl), ..., (namn, modn)],
is equivalent to

46

GDBM

withtable (naml, modl) (fn dbl =>
withtable (nam2, mod2) (fn db2 =>

f [dbl, db2, ...]))
That is, first opens the databases dbl, db2, ... in that order in
files naml, nam2, ... with modes modl, mod2, ..., then applies f to
[dbl, db2, ...], and finally closes [dbl, db2, ...]. Makes sure to
close all databases even if an exception is raised during the
opening of dbl, db2, ... or during the evaluation of f[dbl, db2, ...].

[add db (k,v)] adds the pair (k, v) to db. Raises AlreadyThere if
there is a pair (k, _) in db already. Raises NotWriter if db is
not opened in write mode.

[insert db (k, v)] adds the pair (k, v) to db, replacing any pair
(k, _) at k if present. Raises NotWriter if db is not opened in
write mode.

[find db k] returns v if the pair (k, v) is in db; otherwise
raises NotFound.

[peek db k] returns SOME v if the pair (k, v) is in db; otherwise
returns NONE.

[hasKey db k] returns true if there is a pair (k, _) in db;
otherwise returns false.

[remove db k] deletes the pair (k, _) from the table if present;
otherwise raises NotFound. Raises NotWriter if db is not opened in
write mode.

[listKeys db] returns a list of all keys in db in an unspecified
order.

[numItems db] is the number of (key, value) pairs in db.
Equivalent to length(listKeys db).

[listItems db] returns a list of all (key, value) pairs in db in some
order. Equivalent to
List.map (fn key => (key, find(db,key))) (listKeys db)

[app f db] 1is equivalent to List.app f (listItems db), provided the
function f does not change the set of keys in the table.
Otherwise the effect is unpredictable.

[map f db] is equivalent to List.map f (listItems db), provided the
function f does not change the set of keys in the table.
Otherwise the result and effect are unpredictable.

[fold £ a db] is equivalent to

List.foldr (fn ((k, v), r) => f(k, v, r)) a (listItems db)
provided the function f does not change the set of keys in the
table. Otherwise the result and effect are unpredictable.

[fastwrite] can be set to speed up writes to a table. By default,
!fastwrite is false and every write to a table will be followed by
file system synchronization. This is safe, but slow if you perform
thousands of writes. However, if !fastwrite is true when calling
withtable, then writes may not be followed by synchronization,
which may speed up writes considerably. In any case, the file
system is synchronized before withtable returns.

GDBM

[reorganize db] has no visible effect, but may be called after a
lot of deletions to shrink the size of the table file.

47

43 GDIMAGE

Module Gdimage

Gdimage -- creating PNG images -- requires Dynlib
type image
type color

datatype style =
ColorS of color
| Transparents$S

datatype mode =
Color of color
| Transparent
| Brushed of image
| Styled of style vector
| StyledBrushed of bool vector * image
| Tiled of image

datatype font =

Tiny

| Small

| MediumBold

| Large

| Giant
type rgb = int * int * int RGB color components, 0..255
type xy = int * int points (x, y) and sizes (w, h)
val image : xy -> rgb -> image
val fromPng : string -> image
val toPng : image -> string -> unit
val stdoutPng : image -> unit
val size : image -> xy
val color : image -> rgb -> color
val rgb : image -> color -> rgb
val htmlcolors : image -> { aqua : color, black : color, blue : color,

fuchsia : color, gray : color,
green : color, lime : color, maroon : color,
navy : color, olive : color, purple : color,
red : color, silver : color, teal : color,
white : color, yellow : color }

val getTransparent : image -> color option

val setTransparent : image -> color -> unit

val noTransparent : image -> unit

val drawPixel : image -> mode -> xy -> unit

val drawLine : image -> mode -> xy * xy -> unit
val drawRect : image -> mode -> xy * xy -> unit
val fillRect : image -> mode -> xy * xy —-> unit

val drawPolygon : image -> mode -> xy vector -> unit
val fillPolygon : image -> mode —> xy vector -> unit

val drawArc : image -> mode -> { ¢ : xy, wh : xy, from : int, to : int }
-> unit

val fill : image -> mode -> xy -> unit

val fillBorder : image -> mode —-> xy -> color -> unit

val copy : { src : image, srcxy : Xy, srcwh : xy,

GDIMAGE 49

val

val
val
val
val
val

dst : image, dstxy : xy } -> unit
copyResize : { src : image, srcxy : Xy, srcwh : xy,
dst : image, dstxy : xy, dstwh : xy } -> unit

char : image -> color -> font -> xy -> char -> unit
charUp : image -> color -> font -> xy -> char -> unit
string : image -> color -> font -> xy -> string -> unit
stringUp : image -> color -> font -> xy -> string -> unit
charsize : font —> xy

This is an interface to version 1.7.3 of Thomas Boutell’s gd image
package for creating PNG images.

[image] is the type of images being drawn. They can be created
from scratch, imported from PNG files, and exported to PNG files.

All functions correctly clip to the actual size of the image.

[color] is the type of colors. Currently there can be at most 256
different colors in an image.

[style] is the type of drawing styles. A style is either a color,
or transparent.

[mode] is the type of drawing modes for line drawing and filling.
It may be one of

Color ¢ where ¢ is a color

Transparent

Brushed img for line drawing using the given image as brush
Styled stys for line drawing, cyclically using the styles

in the given vector to create a dashed line
StyledBrushed (vis, img)
for line drawing, using the given image as a brush,
cyclically switching it on and off according to the
given bool vector
Tiled img for filling, using the given image as a tile

[font] is the type of fonts: Tiny, Small, MediumBold, Large, Giant

[rgb] is the type of (r, g, b) triples, where the components
indicate color intensity as an integer value in the range 0..255.

[xy] is the type of pairs, used for (x, y) coordinates and to
indicate dimensions (width, height). The origin (0, 0) is the
upper left-hand corner of the image. The x coordinates increase to
the right; the y coordinates increase downwards.

[image (w, h) rgb] creates a new empty image with size (w, h) and
the background color rgb. Raises Fail if the image cannot be
created.

[fromPng filename] reads an image from the given PNG file. Raises
Fail if the file does not exist or does not contain a PNG image.

[size img] returns (w, h) where w is the width and h the height of
img.

[toPng img filename] write the image to the given file in PNG
format.

50

GDIMAGE

[stdoutPng img] writes the image to standard output in PNG format,
preceded by the HTTP header "Content-type: image/png\n\n". Useful
in CGI scripts.

[color img rgb] returns the color code corresponding to rgb in the
color table of img. Reuses the color code if it has already been
allocated; otherwise allocates the color if possible; otherwise
returns an approximation to the color rgb.

[htmlcolors im] returns a record containing the 16 standard HTML
colors: aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, purple, red, silver, teal, white, yellow. This call
will allocate all these colors in the color table of the image,
even if you do not use all of them.

[rgb img color] returns (r, g, b) where r, g, b are the component
intensities of the given color in the color table of img.

[getTransparent img] returns SOME c where c is the ‘transparent’
color of the image, if any; otherwise returns NONE.

[setTransparent img col] makes the given color transparent in the
image.

[noTransparent img] makes all colors non-transparent in the image.
This is useful for images that are to be used as tiles for filling.
Such images are not allowed to have a transparent color.

[drawPixel img mode xy] draws the pixel in img at xy using the
given mode.

[drawLine img mode (xyl, xy2)] draws a line in img from xyl to xy2
using the given mode.

[drawRect img mode (xyl, xy2)] draws a rectangle in img with
opposing corners xyl and xy2 using the given mode.

[fillRect img mode (xyl, xy2)] draws a filled rectangle in img with
opposing corners xyl and xy2 using the given mode.

[drawPolygon img mode xys] draws a polygon in img with corners as
given by the vector xys of coordinates using the given mode.

[fillPolygon img mode xys] draws a filled polygon in img with
corners as given by the vector xys of coordinates using the given
mode.

[drawArc img mode { c, wh, from, to }] draw part of an ellipsis arc
in img, with center c, width and height wh, using the given ‘from’
and ‘to’ angles, given in degrees (0..360).

[fill img mode xy] fills the region in img around xy which has the
same color as the point at img, using the given mode.

[fillBorder img mode xy col] fills the region in img around xy
which is delimited by the color col, using the given mode.

[copy { src, srcxy, srcwh, dst, dstxy }] copies part of the image
src into the image dst, without rescaling. More precisely, copies
the subimage of src whose upper left-hand corner is srcxy and whose
size is srcwh, into the subimage of dst whose upper left-hand

GDIMAGE

corner is dstxy. The images src and dst may be the same, but if
the subimages overlap, then the result is unpredictable.

[copyResize { src, srcxy, srcwh, dst, dstxy, dstwh }] copies part
of the image src into the image dst, rescaling to the given size
dstwh of the destination subimage. Otherwise works as copy.

[char img col font xy ch] draws the character ch left-right (to be
read from south) in img at xy using the given color.

[charUp img col font xy ch] draws the character ch bottom-up (to be
read from east) in img at xy using the given color.

[string img col font xy s] draws the string s left-right (to be
read from south) in img at xy using the given color.

[stringUp img col font xy s] draws the string s bottom-up (to be
read from east) in img at xy using the given color.

[charsize font] returns (w, h) where w is the width and h the
height, in pixels, of each character in the given font.

51

52 GENERAL

Module General

SML Basis Library and Moscow ML top-level declarations
SML Basis Library types

type exn
eqtype unit
datatype order = LESS | EQUAL | GREATER

Additional Moscow ML top-level types

datatype bool = false | true

eqtype char

eqtype int

datatype 'a option = NONE | SOME of ’a

type ppstream

eqtype real

eqtype string

type substring

type syserror

type 'a vector

eqtype word

eqtype word8

datatype "a list nil | op :: of "a * 'a list
datatype 'a ref = ref of ’'a

datatype ’"a frag = QUOTE of string | ANTIQUOTE of ’'a

SML Basis Library exceptions

exception Bind
exception Chr
exception Div
exception Domain
exception Fail of string
exception Match
exception Overflow
exception Option
exception Subscript
exception Size
exception Span

Additional Moscow ML top-level exceptions

exception Graphic of string

exception Interrupt

exception Invalid_argument of string

exception Io of {function : string, name : string, cause : exn }
exception Out_of_memory

exception SysErr of string * syserror option

SML Basis Library values

val ! : 'aref > 'a

val := : 'a ref * "a -> unit

val o : ('b > "¢c) * ("a > "b) > ("a > '¢)
val ignore : "a -> unit

val before :'a * unit -> 'a

val exnName : exn -> string

GENERAL 53

val exnMessage : exn —> string

Additional Moscow ML top-level values

val not : bool -> bool

val * string * string -> string

val = : "a * "a -> bool

val <> : "a * "a -> bool

val ceil : real -> int round towards plus infinity
val floor : real -> int round towards minus infinity
val real :int -> real equals Real.fromInt

val round : real -> int round to nearest even

val trunc : real -> int round towards zero

val vector : 'a list -> ’'a vector

Below, numtxt is int, Word.word, Word8.word, real, char, string:

val < : numtxt * numtxt -> bool
val <= : numtxt * numtxt -> bool
val > : numtxt * numtxt -> bool
val >= : numtxt * numtxt -> bool

val makestring : numtxt -> string
Below, realint is int or real:

val ~ . realint -> realint raises Overflow
val abs : realint -> realint raises Overflow

Below, num is int, Word.word, Word8.word, or real:

val + :num * num -> num raises Overflow
val - : num * num -> num raises Overflow
val * :num * num -> num raises Overflow
val / : real * real -> real raises Div, Overflow

Below, wordint 1is int, Word.word or Word8.word:

val div : wordint * wordint -> wordint raises Div, Overflow
val mod : wordint * wordint -> wordint raises Div

[exn] 1s the type of exceptions.

[unit] is the type containing the empty tuple () which equals the
empty record { }.

[order] is used as the return type of comparison functions.

[bool] is the type of booleans: false and true. Equals Bool.bool.
[char] is the type of characters such as #"A". Equals Char.char.
[int] is the type of integers. Equals Int.int.

[option] 1is the type of optional values. Equals Option.option.

[ppstream] is the type of pretty-printing streams, see structure PP.

54

GENERAL

Pretty-printers may be installed in the top-level by function
Meta.installPP; see the Moscow ML Owner’s Manual.

[real] is the type of floating-point numbers. Equals Real.real.
[string] is the type of character strings. Equals String.string.
[substring] is the type of substrings. Equals Substring.substring.

[syserror] is the abstract type of system error codes.
Equals OS.syserror.

[vector] is the type of immutable vectors. Equals Vector.vector.
[word] is the type of unsigned words. Equals Word.word.
[word8] is the type of unsigned bytes. Equals Word8.word.

["a list] is the type of lists of elements of type ’a.
Equals List.list.

["a ref] is the type of mutable references to values of type ’a.
["a frag] is the type of quotation fragments, resulting from the
parsing of quotations ' ... ' and antiquotations. See the Moscow

ML Owner’s Manual.

[Bind] is the exception raised when the right-hand side value in a
valbind does not match the left-hand side pattern.

[Chr] signals an attempt to produce an unrepresentable character.
[Div] signals an attempt to divide by zero.

[Domain] signals an attempt to apply a function outside its domain
of definition; such as computing Math.sqrt (~1).

[Fail] signals the failure of some function, usually in the Moscow
ML specific library structures.

[Match] signals the failure to match a value against the patterns
in a case, handle, or function application.

[Option] is raised by Option.valOf when applied to NONE.
[Overflow] signals the attempt to compute an unrepresentable number.

[Subscript] signals the attempt to use an illegal index in an
array, dynarray, list, string, substring, vector or weak array.

[Size] signals the attempt to create an array, string or vector
that is too large for the implementation.

[Graphic] signals the failure of Graphics primitives (DOS only).
[Interrupt] signals user interrupt of the computation.

[Invalid_argument] signals the failure of a function in the runtime
system.

[To { function, name, cause }] signals the failure of an

GENERAL 55

input/output operation (function) when operating on a file (name).
The third field (cause) may give a reason for the failure.

[Out_of_memory] signals an attempt to create a data structure too
large for the implementation, or the failure to extend the heap or
stack.

[SysErr (msg, err)] signals a system error, described by msg. A
system error code may be given by err. If so, it will usually hold
that msg = 0S.errorMsg err.

SML Basis Library values

[! rf] returns the value pointed to by reference rf.

[:=(rf, e)] evaluates rf and e, then makes the reference rf point to

the value of e. Since := has infix status, this is usually written
rf := e

[o(f, g)] computes the functional composition of f and g, that is,

fn x => f(g x). Since o has infix status, this is usually written
fog

[ignore e] evaluates e, discards its value, and returns () : unit.

[before(el, e2)] evaluates el, then evaluates e2, then returns the
value of el. Since before has infix status, this is usually written
el before e2
[exnName exn] returns a name for the exception constructor in exn.
Never raises an exception itself. The name returned may be that of
any exception constructor aliasing with exn. For instance,
let exception El; exception E2 = E1 in exnName E2 end
may evaluate to "E1" or "E2".
[exnMessage exn] formats and returns a message corresponding to
exception exn. For the exceptions defined in the SML Basis Library,
the message will include the argument carried by the exception.
Additional Moscow ML top-level values
[not b] returns the logical negation of b.
[*] is the string concatenation operator.
[=] is the polymorphic equality predicate.

[<>] is the polymorphic inequality predicate.

[ceil r] is the smallest integer >= r (rounds towards plus infinity).
May raise Overflow.

[floor r] is the largest integer <= r (rounds towards minus infinity).
May raise Overflow.

[real i] is the floating-point number representing integer 1i.
Equivalent to Real.fromInt.

[round r] is the integer nearest to r, using the default rounding

56

mode. May raise Overflow.

[trunc r] 1is the numerically largest integer between r and zero

(rounds towards zero). May raise Overflow.

[vector [x1, ..., xn]] returns the vector #[x1, ..., xn].
[< (x1, x2)]

[<=(x1, x2)]

[> (x1, x2)]

[>=(x1, x2)]

These are the standard comparison operators for arguments of type
int, Word.word, Word8.word, real, char or string.

[makestring v] returns a representation of value v as a string, for
v of type int, Word.word, Word8.word, real, char or string.

[~ x] 1s the numeric negation of x (which can be real or int). May
raise Overflow.

[abs x] is the absolute value of x (which can be real or int). May
raise Overflow.

[+ (el, e2)]
[- (el, e2)]
[* (el, e2)]

These are the standard arithmetic operations for arguments of type
int, Word.word, Word8.word, and real. They are unsigned in the
case of Word.word and Word8.word. May raise Overflow.

[/ (el, e2)] is the floating-point result of dividing el by e2.
May raise Div and Overflow.

[div(el, e2)] is the integral quotient of dividing el by e2 for
arguments of type int, Word.word, and Word8.word. See Int.div and
Word.div for more details. May raise Div, Overflow.

[mod(el, e2)] is the remainder when dividing el by e2, for
arguments of type int, Word.word, and Word8.word. See Int.mod and
Word.mod for more details. May raise Div.

GENERAL

HASHSET

Module Hashset

Hashset -- sets implemented by hashtables

signature Hashset
type ’item set

exception NotFound

sig

val empty (" _item -> word) * (/_item * ’'_item -> bool) -> ’_item set
val singleton ("_item -> word) * (’/_item * ’'_item -> bool) -> ’_item
-> ' _item set
val member '_item set * '_item -> bool
val retrieve ' item set * /_item -> '_item
val peek '_item set * ’/_item -> ’_item option
val add '_item set * ’_item -> unit
val addList '_item set * ’_item list -> unit
val delete '_item set * '_item -> unit
val isEmpty '_item set -> bool
val isSubset '_item set * ’/_item set -> bool
val equal "_item set * ’/_item set -> bool
val numItems '_item set -> int
val listItems ' _item set -> '_item list
val app (" _item -> unit) -> ’_item set -> unit
val fold ("_item * b -> 'b) -> 'b -> '_item set -> Db
val all (" _item -> bool) -> '_item set -> bool
val exists (" _item -> bool) -> ' _item set -> bool
val find (' _item -> bool) -> ’_item set -> '_item option
val copy "_item set -> ’_item set
val hash "_item set -> word
val polyHash "a -> word
end
["item set] is the type of sets of elements of type ’item, with a

given hash function and equality predicate.

[empty (hash, equal)] creates a new empty set with the given hash

function and equality predicate.
implies hash x

[singleton (hash, equal)

hash vy.

It must hold that equal(x, y)

i] creates the singleton set containing i,

with the given hash function and equality predicate.

[member (s,

[retrieve (s,

[peek (s, 1)

[add(s, 1)]

i)]

returns true if and only if i1 is in s.

i)]

returns i if it is in s; raises NotFound otherwise.

] returns SOME i if i is in s; returns NONE otherwise.

adds item i to set s.

[addList (s, xs)]

[delete (s,

i)]

adds all items from the list xs to the set s.

removes item i1 from s. Raises NotFound if i is not in s.

58

HASHSET

[isEmpty s] returns true if the set is empty; false otherwise.

[equal (sl, s2)] returns true if and only if the two sets have the
same elements.

[isSubset (sl, s2)] returns true if and only if sl is a subset of s2.
[numItems s] returns the number of items in set s.

[listItems s] returns a list of the items in set s, in some order.
[app f s] applies function f to the elements of s, in some order.

[fold f e s] applies the folding function f to the entries of the
set in some order.

[find p s] returns SOME i, where i is an item in s which satisfies
p, 1f one exists; otherwise returns NONE.

[hash s] returns the hashcode of the set, which is the sum of the
hashcodes of its elements, as computed by the hash function given
when the set was created.

[polyHash v] returns a system-defined hashcode for the value v.

This pseudo-polymorphic hash function can be used together with the
standard equality function (=) to create a Hashset for any type that
admits equality, as follows:

val set = Hashset.empty (Hashset.hash, op =);

HELP 59

Module Help

Help -- on-line help functions

val help : string -> unit

val displayLines : int ref

val helpdirs : string list ref

val indexfiles : string list ref

val specialfiles : {term : string, file : string, title : string} list ref
val welcome : string vector ref

val browser : (string -> unit) ref

val defaultBrowser : string -> unit

[help s] provides on-line help on the topic indicated by string s.

help "lib"; gives an overview of the Moscow ML library.
help "id"; provides help on identifier id (case-insensitive).

If exactly one identifier in the library matches id (case-insensitive),
then the browser opens the signature defining that identifier,
positioning the first occurrence of id at the center of the screen.

If more than one identifier matches id (case-insensitive), then a
small menu lists the signatures containing the identifier. To
invoke the browser, just type in the number of the desired
signature.

The browser accepts the following commands, which must be followed
by a newline:

d move down by half a screen

u move up by half a screen

t move to top of file

b move to bottom of file

/str cyclically search for string str in help file (case-insensitive)
n search for next occurrence of str

q quit the browser

A newline by itself moves down one screen (24 lines).

[helpdirs] is a reference to a list of additional directories to be
searched for help files. The directories are searched in order,
after the -stdlib directory.

[indexfiles] is a reference to a list of full paths of help term
index files. Setting ‘indexfiles’ affects subsequent invocations
of ‘help’. (Every invocation of ‘help’ reads the index files anew).

[specialfiles] is a reference to a list of {term, file, title}
records, each of which maps a search term to the specified file
with the specified title (in the browser). The string in the
‘term’ field should be all lowercase, since the argument passed to
‘help’ will be converted to lowercase.

[welcome] is a reference to the text shown in response to the query
help "". This is a vector of lines of text.

[browser] is a reference to the function that gets invoked on the
text of the help file. 1Initially set to defaultBrowser.

60

[defaultBrowser] is the default (built-in) help browser.

[displayLines] is a reference to the size of the display (window)
assumed by the defaultBrowser; initially 24 lines. Set it to the
actual size of your window for best results.

HELP

INT

Module Int

Int -- SML Basis Library
type int = int

val precision : int option

val minInt : int option

val maxInt : int option

val ~ ¢ int -> int Overflow
val * : int * int -> int Overflow
val div : int * int -> int Div, Overflow
val mod : int * int -> int Div

val quot : int * int -> int Div, Overflow
val rem : int * int -> int Div

val + : int * int -> int Overflow
val - : int * int -> int Overflow
val > : int * int -> bool

val >= : int * int -> bool

val < : int * int -> bool

val <= : int * int -> bool

val abs . int -> int Overflow
val min ¢ int * int -> int

val max . int * int -> int

val sign : int -> int

val sameSign : int * int -> bool

val compare : int * int -> order

val tolInt : int -> int

val fromInt : int -> int

val tolarge : int -> int

val fromLarge : int -> int

val scan : StringCvt.radix

-> (char, ’'a) StringCvt.reader -> (int, ’'a) StringCvt.reader
val fmt : StringCvt.radix -> int -> string
val toString : int -> string

val fromString : string -> int option Overflow

[precision] is SOME n, where n is the number of significant bits in an
integer. In Moscow ML n is 31 in 32-bit architectures and 63 in 64-bit
architectures.

[minInt] is SOME n, where n is the most negative integer.

[maxInt] is SOME n, where n is the most positive integer.

[~]

[*]

[+]

[-] are the usual operations on integers. They raise Overflow if
the result is not representable as an integer.

[abs] returns the absolute value of its argument. Raises Overflow
if applied to the most negative integer.

[div] is integer division, rounding towards minus infinity.

62

INT

Evaluating i div 0 raises Div. Evaluating i div ~1 raises
Overflow if i is the most negative integer.

[mod] is the remainder for div. If g =1 div d and r = i mod d then
it holds that gqd + r = i, where either 0 <= r < d or d < r <= 0.
Evaluating i mod 0 raises Div, whereas i mod ~1 = 0, for all i.
[quot] is integer division, rounding towards zero. Evaluating
quot (i, 0) raises Div. Evaluating quot (i, ~1) raises Overflow if i
is the most negative integer.
[rem(i, d)] is the remainder for quot. That is, if g = quot (i, d)
and r = rem(i, d) thend * g + r = i, where r is zero or has the
same sign as i. If made infix, the recommended fixity for quot and
rem is

infix 7 quot rem
[min(x, y)] is the smaller of x and y.
[max (x, y)] 1s the larger of x and y.

[sign x] is ~1, 0, or 1, according as x is negative, zero, or positive.

] are the usual comparisons on integers.

[compare (x, y)] returns LESS, EQUAL, or GREATER, according
as x 1s less than, equal to, or greater than y.

[sameSign(x, y)] is true iff sign x = sign y.

[toInt x] is x (because this is the default int type in Moscow ML) .
[fromInt x] is x (because this is the default int type in Moscow ML) .
[toLarge x] is x (because this is the largest int type in Moscow ML) .
[fromLarge x] is x (because this is the largest int type in Moscow ML) .

[fmt radix 1] returns a string representing i, in the radix (base)
specified by radix.

radix description output format
BIN signed binary (base 2) ~?2[01]+

OCT signed octal (base 8) ~2[0-7]+

DEC signed decimal (base 10) ~?2[0-9]+

HEX signed hexadecimal (base 16) ~?[0-9A-F]+

[toString 1] returns a string representing i in signed decimal format.
Equivalent to (fmt DEC 1i).

[fromString s] returns SOME (i) if a decimal integer numeral can be
scanned from a prefix of string s, ignoring any initial whitespace;
returns NONE otherwise. A decimal integer numeral must have form,
after possible initial whitespace:

[+~-12[0-9]+

[scan radix getc charsrc] attempts to scan an integer numeral

INT

from the character source charsrc, using the accessor getc, and

ignoring any i
of the numeral
SOME (1, rest)

is the unused part of the character source.

nitial whitespace.
(BIN, OCT, DEC, HEX).

If successful,

The radix argument specifies the base

it returns

where i is the value of the number scanned, and rest

form, after possible initial whitespace:

radix inp
BIN [+~
OCT [+~
DEC [+~
HEX [+~

ut format

A numeral must have

63

64 INTINF

Module IntInf

LargeInt -- arbitrary-precision integers 1995-09-04, 1998-04-12
This module requires Dynlib and the GNU GMP package to be installed

type int

val precision : int option

val minInt : int option

val maxInt : int option

val ~ : int -> int

val + : int * int -> int

val - int * int -> int

val * : int * int -> int

val div : int * int -> int

val mod : int * int -> int

val quot : int * int -> int

val rem : int * int -> int

val < : int * int -> bool

val > : int * int -> bool

val <= ¢ int * int -> bool

val >= : int * int -> bool

val eq : int * int -> bool

val ne : int * int -> bool

val abs : int -> int

val min : int * int -> int

val max : int * int -> int

val divMod : int * int -> int * int
val quotRem : int * int -> int * int
val pow : int * Int.int -> int
val log2 : int -> Int.int

val sign : int -> Int.int

val sameSign : int * int -> bool
val compare : int * int -> order
val fromInt . Int.int -> int

val tolInt : int -> Int.int Overflow
val tolLarge : int -> int

val fromLarge : int -> int

val fromString : string -> int option
val toString : int -> string

val scan : StringCvt.radix
-> (char, ’"a) StringCvt.reader -> (int, ’a) StringCvt.reader
val fmt : StringCvt.radix -> int -> string

INTMAP 65

Module Intmap

Intmap -- Applicative maps with integer keys

From SML/NJ 1ib 0.2, copyright 1993 by AT&T Bell Laboratories
Original implementation due to Stephen Adams, Southampton, UK

type ’'a intmap

exception NotFound

val empty : unit -> 'a intmap

val insert : "a intmap * int * 'a -> 'a intmap
val retrieve "a intmap * int -> 'a

val peek "a intmap * int -> "a option

val remove : 'a intmap * int -> ’a intmap * 'a
val numItems "a intmap -> int

val listItems "a intmap -> (int * 'a) list

val app (int * 'a -> unit) -> ’'a intmap -> unit

val revapp (int * 'a -> unit) -> ’'a intmap -> unit

val foldr : (int * ’'a * 'b -> 'b) -> 'b -> 'a intmap > 'b
val foldl : (int * 'a * 'b -> 'b) -> 'b -> 'a intmap > b
val map : (int * 'a -> 'b) -> ’'a intmap -> 'b intmap

val transform : (‘a -> 'b) -> ’'a intmap -> 'b intmap

["a intmap] is the type of applicative maps from int to ’a.
[empty] creates a new empty map.
[insert (m, 1, v)] extends (or modifies) map m to map i to v.

[retrieve(m, i)] returns v if m maps i to v; otherwise raises
NotFound.

[peek(m, 1)] returns SOME v if m maps i1 to v; otherwise NONE.
[remove (m, i)] removes i1 from the domain of m and returns the
modified map and the element v corresponding to i. Raises NotFound

if 1 is not in the domain of m.

[numItems m] returns the number of entries in m (that is, the size
of the domain of m).

[listItems m] returns a list of the entries (i, v) of integers i and
the corresponding values v in m, in increasing order of 1i.

[app f m] applies function f to the entries (i, v) in m, in
increasing order of 1i.

[revapp f m] applies function f to the entries (i, v) in m, in
decreasing order of 1i.

[foldl f e m] applies the folding function f to the entries (i, V)
in m, in increasing order of 1i.

[foldr £ e m] applies the folding function f to the entries (i, v)
in m, in decreasing order of 1i.

[map £ m] returns a new map whose entries have form (i, f£(i,v)),
where (i, v) 1is an entry in m.

66

[transform f m] returns a new map whose entries have form (i, f(i,v)),
where (i, v) is an entry in m.

INTMAP

INTSET

Module Intset

Intset -- applicative sets of integers

From SML/NJ 1ib 0.2, copyright 1993 by AT&T Bell Laboratories
Original implementation due to Stephen Adams, Southampton, UK
type intset

exception NotFound

val empty : intset

val singleton : int -> intset

val add : intset * int -> intset

val addList : intset * int list -> intset

val isEmpty : intset -> bool

val equal : intset * intset -> bool

val isSubset : intset * intset -> bool

val member : intset * int -> bool

val delete : intset * int -> intset

val numItems : intset -> int

val union : intset * intset -> intset

val intersection : intset * intset -> intset

val difference : intset * intset -> intset

val listItems : intset -> int list

val app : (int -> unit) -> intset -> unit

val revapp : (int -> unit) -> intset -> unit

val foldr : (int * 'b -> 'b) -> 'b -> intset -> Db
val foldl : (Int * 'b -> 'b) -> 'b -> intset -> 'Db
val find (int -> bool) -> intset -> int option

[intset] is the type of sets of integers.

[empty] is the empty set of integers.

[singleton 1] is the singleton set containing i.

[add (s, 1)] adds item i to set s.

[addList (s, xs)] adds all items from the list xs to the set s.
[isEmpty s] returns true if and only if the set is empty.

[equal (s1, s2)] returns true if and only if the two sets have the
same elements.

[isSubset (sl, s2)] returns true if and only if sl is a subset of s2.
[member (s, 1)] returns true if and only if i is in s.

[delete(s, 1)] removes item i from s. Raises NotFound if i is not in s.
[numItems s] returns the number of items in set s.

[union(sl, s2)] returns the union of sl and s2.

[intersection(sl, s2)] returns the intersectionof sl and s2.

[difference(sl, s2)] returns the difference between sl and s2 (that
is, the set of elements in sl but not in s2).

68

INTSET

[listItems s] returns a list of the items in set s, in increasing
order.

[app f s] applies function f to the elements of s, in increasing
order.

[revapp f s] applies function f to the elements of s, in decreasing
order.

[foldl f e s] applies the folding function f to the entries of the
set in increasing order.

[foldr f e s] applies the folding function f to the entries of the
set in decreasing order.

[find p s] returns SOME i, where i is an item in s which satisfies
p, 1f one exists; otherwise returns NONE.

LEXING 69

Module Lexing

Lexing -- run-time library for lexers generated by mosmllex
Closely based on the library for camllex. Copyright 1993 INRIA, France

local open Obj in
type lexbuf

val createlexerString : string -> lexbuf

val createlexer : (CharArray.array -> int -> int) -> lexbuf
val getLexeme : lexbuf -> string

val getLexemeChar : lexbuf -> int -> char

val getLexemeStart : lexbuf -> int

val getLexemeEnd . lexbuf -> int

For internal use in generated lexers:

val dummyAction : lexbuf -> obj

val backtrack : lexbuf -> ’a

prim_val getNextChar : lexbuf -> char = 1 "get_next_char"

prim val getLexBuffer : lexbuf -> string =1 "fieldl"

prim _val getLexAbsPos : lexbuf -> int =1 "field2"

prim_val getLexStartPos : lexbuf -> int =1 "field3"

prim_val getLexCurrPos : lexbuf -> int =1 "field4"

prim_val getLexLastPos : lexbuf -> int =1 "fieldb5"

prim_val getlLexLastAction : lexbuf -> (lexbuf -> obj) =1 "field6"

prim_val setLexAbsPos : lexbuf -> int -> unit = 2 "setfield2"
prim_val setLexStartPos : lexbuf -> int -> unit = 2 "setfield3"
prim_val setLexCurrPos . lexbuf -> int -> unit = 2 "setfield4"
prim_val setLexLastPos . lexbuf -> int -> unit = 2 "setfield5"
prim_val setLexLastAction : lexbuf -> (lexbuf -> obj) -> unit = 2 "setfield6"
end

These functions are for use in mosmllex-generated lexers. For
further information, see the Moscow ML Owner’s Manual. For
examples, see mosml/examples/lexyacc and mosml/examples/calc.

[lexbuf] is the type of lexer buffers. A lexer buffer is the
argument passed to the scanning functions defined by the
mosmllex-generated scanners. The lexer buffer holds the current
state of the scanner, plus a function to refill the buffer from the
input.

[createlexerString s] returns a lexer buffer which reads from the
given string s. Reading starts from the first character in the
string. An end-of-input condition is generated when the end of the
string is reached.

[createlexer f] returns a lexer buffer that will use the given
function f for reading additional input. When the lexer needs more
characters, it will call the given function as (f carr n), where
carr is a character array, and n is an integer. The function
should put at most characters or in carr, starting at character
number 0, and return the number of characters actually stored. A
return value of 0 means end of input.

70

A lexer definition (input to mosmllex) consists of fragments of
this form

parse
lhsl { rhsl }
| 1lhs2 { rhs2 }
| 1hs3 { rhs3 }

where the lhs are regular expressions matching some string of
characters, and the rhs are corresponding semantic actions, written
in ML. The following functions can be used in the semantic actions:

[getLexeme lexbuf] returns the string matched by the left-hand side
regular expression.

[getLexemeChar lexbuf i] returns character number i in the matched
string.

[getLexemeStart lexbuf] returns the start position of the matched
string (in the input stream). The first character in the stream
has position 0.

[getLexemeEnd lexbuf] returns the end position, plus one, of the
matched string (in the input stream). The first character in the
stream has position 0.

LEXING

LIST

Module List

List -- SML Basis Library

datatype list = datatype list

exception Empty

val
val
val
val

val
val
val
val
val
val
val
val
val
val
val
val
val

val

val
val

val
val

val

val

val

null
hd
tl
last

nth
take
drop
length

rev

@
concat
revAppend

app

map
mapPartial
find
filter
partition

foldr
foldl

exists
all

collate
tabulate

getItem

71

Empty
Empty
Empty

Subscript
Subscript
Subscript

-> 'a list -> 'b list

-> 'a list -> ’'a list

"a list -> bool

"a list -=> 'a

"a list -> 'a list

"a list -> 'a

"a list * int -> 'a

"a list * int -> 'a list

"a list * int -> 'a list

"a list -> int

"a list -> 'a list

"a list * 'a list -> ’'a list

"a list list -> ’'a list

"a list * 'a list -> ’'a list

("a -> unit) -> "a list -> unit
("a => 'b) -> "a list -> 'b list
("a => 'b option)

("a => bool) -> "a list -> 'a option
("a => bool)

("a => bool) —> ’"a list —>

(Ia* Ib -> Ib)
(Ia* Ib -> Ib) —>

("a => bool)
("a -> bool)

("a * "a -> order)

int *

"a list —>

(int => 'a)

(I

-> ’a
-> 'a

a*'a

-> "a list

("a list * ’"a list)

-> 'b -> 'a list > 'Db
b -=> "a list -> 'b

list -> bool
list —> bool

-> 'a list * 'a list -> order

Size

list) option

["a list] 1is the type of lists of

[null xs]
[hd xs]

[tl xs]

returns the first element

returns all but the first

Raises Empty if xs is nil.

[last xs]

is true iff xs is nil.

returns the last element of xs.

of xs.

elements of type 'a.

Raises Empty if xs is nil.

element of xs.

Raises Empty if xs is nil.

[nth(xs, 1)] returns the i’th element of xs, counting from 0.

Raises Subscript if i<0 or i>=length xs.

[take (xs,

i)]

returns the first i elements of xs.

Raises Subscript

LIST

if i<0 or i>length xs.

[drop(xs, 1)] returns what is left after dropping the first i
elements of xs. Raises Subscript if i<0 or i>length xs.
It holds that take(xs, i) @ drop(xs, 1) = xs when 0 <= i <= length xs.

[length xs] returns the number of elements in xs.
[rev xs] returns the list of xs’s elements, reversed.
[xs @ ys] returns the list which is the concatenation of xs and ys.

[concat xss] returns the list which is the concatenation of all the
lists in xss.

[revAppend (xs, ys)] is equivalent to rev xs @ ys, but more efficient.
l[app f xs] applies f to the elements of xs, from left to right.

[map f xs] applies f to each element x of xs, from left to
right, and returns the list of f’s results.

[mapPartial f xs] applies f to each element x of xs, from left
to right, and returns the list of those y’s for which f(x)
evaluated to SOME y.

[find p xs] applies p to each element x of xs, from left to right,
until p(x) evaluates to true; returns SOME x if such an x exists,
otherwise NONE.

[filter p xs] applies p to each element x of xs, from left to
right, and returns the sublist of those x for which p(x) evaluated
to true.

[partition p xs] applies p to each element x of xs, from left

to right, and returns a pair (pos, neg) where pos is the sublist

of those x for which p(x) evaluated to true, and neg is the sublist of
those for which p(x) evaluated to false.

[foldr op% e xs] evaluates x1 % (x2 % (... % (x(n-1) % (xn % e)) ...))
where xs = [x1, %2, ..., x(n-1), xn], and % is taken to be infixed.
[foldl op% e xs] evaluates xn % (x(n-1) % (F (x2 % (x1 % e))))
where xs = [x1, x2, ..., x(n-1), xn], and % is taken to be infixed.

[exists p xs] applies p to each element x of xs, from left to
right until p(x) evaluates to true; returns true if such an x
exists, otherwise false.

[all p xs] applies p to each element x of xs, from left to
right until p(x) evaluates to false; returns false if such an x
exists, otherwise true.

[collate cmp (xs, ys)] returns LESS, EQUAL or GREATER according as
xs precedes, equals or follows ys in the lexicographic ordering on
lists induced by the ordering cmp on elements.

[tabulate(n, f)] returns a list of length n whose elements are
£(0), £(1), ..., f£(n-1), created from left to right. Raises Size
1f n<0.

LIST

[getItem xs] attempts to extract an element from the list xs. It
returns NONE if xs is empty, and returns SOME (x, xr) if xs=x::xr.
This can be used for scanning booleans, integers, reals, and so on
from a list of characters. For instance, to scan a decimal integer
from a list c¢s of characters, compute

Int.scan StringCvt.DEC List.getItem cs

73

74

LISTPAIR

Module ListPair

ListPair -- SML Basis Library

val zip : 'a list * 'b list -> ('a * 'b) list

val unzip ("a * 'b) list -> 'a list * ’'b list

val map ("a * 'b > 'c¢) -> "a list * 'b list -> ’'c list

val app : ("a * 'b -> unit) -> ’a list * 'b list -> unit

val all : ("a * 'b -> bool) -> ’'a list * 'b list -> bool

val exists ("a * 'b => bool) -> 'a list * 'b list -> bool

val foldr ("a *'"b*'c =>'"¢c) =>'c ->'"a list * 'b list -> 'c
val foldl ("a * 'b *'c =>'¢c) -> 'c -> Ta list * 'b list -> 'c
val allEq : ("a * b -> bool) —> 'a list * 'b list -> bool
exception UnequalLengths

val zipEq ("a list * 'b list) -> ('a * 'b) list

val mapEq : ('a* b ->"'¢c) -> "a list * 'b list -> 'c list

val appEq : ("a* b ->"'¢c) -> 'a list * 'b list -> unit

val foldrEq (fa * 'b *'c => '¢c) > 'c -> "a list * 'b list -> ’'c
val foldlEqg ("a * 'b* 'c =>'"¢c) =>'c -> '"a list * 'b list -> 'c

These functions process pairs (xs, ys) of lists.
There are three groups of functions:

* zip, map, app, all, exists, foldr and foldl raise no exception
when the arqgument lists are found to be of unequal length; the
excess elements from the longer list are simply disregarded.

* zipEq, mapEqg, appEq, foldrEq and foldlEqg raise exception
Unequallengths when the argument lists are found to be of
unequal length.

* allEq raises no exception but returns false if the lists are
found to have unequal lengths (after traversing the lists).

[zip (xs, ys)] returns the list of pairs of corresponding elements
from xs and ys.

[unzip xys] returns a pair (xs, ys), where xs is the list of first
components of xys, and ys is the list of second components from
xys. Hence zip (unzip xys) has the same result and effect as xys.

[map £ (xs, ys)] applies function f to the pairs of corresponding
elements of xs and ys from left to right and returns the list of
results. Hence map f (xs, ys) has the same result and effect as
List.map £ (zip (xs, ys)).

[app f (xs, ys)] applies function f to the pairs of corresponding
elements of xs and ys from left to right and returns (). Hence
app £ (xs, ys) has the same result and effect as

List.app f (zip (xs, ys)).

[all p (xs, ys)] applies predicate p to the pairs of corresponding
elements of xs and ys from left to right until p evaluates to false
or one or both lists is exhausted; returns true if p is true of all
such pairs; otherwise false. Hence all p (xs, ys) has the same
result and effect as List.all p (zip (xs, ys)).

LISTPAIR 75

[exists p (xs, ys)] applies predicate p to the pairs of
corresponding elements of xs and ys from left to right until p
evaluates to true or one or both lists is exhausted; returns true

if p is true of any such pair; otherwise false.

Hence exists p (xs, ys) has the same result and effect as
List.exists p (zip (xs, ys)). Also, exists p (xs, ys) 1s equivalent
to not(all (not o p) (xs, ys)).

[foldr f e (xs, ys)] evaluates f(x1, vyl, f(x2, v2, f(..., f(xn, yn, €))))
where xs = [x1, x2, ..., x(n-1), xn, ...],

ys = [yl, y2, ..., yv(n-1), yn, ...],
and n = min(length xs, length ys).

Equivalent to List.foldr (fn ((x, y), r) => f(x, y, r)) e (zip(xs, ys)).

[foldl f e (xs, ys)] evaluates f(xn, yn, £(..., £(x2, y2, £(x1, yl, €))))
where xs = [x1, x2, ..., x(n-1), xn, ...],

ys = [yl, y2, ..., yv(n-1), yn, ...],
and n = min(length xs, length ys).

Equivalent to List.foldl (fn ((x, y), r) => f(x, y, r)) e (zip(xs, ys)).

[zipEg (xs, ys)] returns the list of pairs of corresponding
elements from xs and ys. Raises Unequallengths if xs and ys do not
have the same length.

[mapEg £ (xs, ys)] applies function f to pairs of corresponding
elements of xs and ys from left to right, and then returns the list
of results if xs and ys have the same length, otherwise raises
Unequallengths. If f has no side effects and terminates, then

it is equivalent to List.map f (zipEq (xs, ys)).

[appEg f (xs, ys)] applies function f to pairs of corresponding
elements of xs and ys from left to right, and then raises
Unequallengths if xs and ys have the same length.

[foldrEq f e (xs, ys)] raises Unequallengths if xs and ys do not
have the same length. Otherwise evaluates
£(x1, yl, £(x2, y2, £(..., £(xn, yn, e))))
where xs = [x1, x2, ..., x(n-1), xn],
ys = [yl, yv2, ..., y(n-1), yn],
and n = length xs = length ys.
Equivalent to List.foldr (fn ((x,y),r) => f(x,y,r)) e (zipEqg(xs, ys)).

[foldlEg f e (xs, ys)] evaluates

f(xn, yn, £(..., £(x2, y2, £(x1, v1, e))))
where xs = [x1, x2, ..., x(n-1), xn, ...],
ys = [yl, y2, ..., yv(n-1), yn, ...],

and n = min(length xs, length ys).

Then raises Unequallengths if xs and ys do not have the same

length. If f has no side effects and terminates normally, then it is
equivalent to List.foldl (fn ((x,y),r) => f(x,y,r)) e (zipEg(xs, ys)).

[allEq p (xs, ys)] works as all p (xs, ys) but returns false if xs
and ys do not have the same length. Equivalent to
all p (xs, ys) andalso length xs = length ys.

76

LISTSORT

Module Listsort

Listsort

val sort ("a * "a -> order) -> 'a list -> 'a list

val sorted ("a * "a -> order) -> ’'a list -> bool

val merge : ("a * '"a -> order) -> 'a list * 'a list -> ’a list
val mergeUniq : (‘a * "a -> order) -> ’'a list * 'a list -> ’'a list
val eqclasses ("a * "a -> order) -> 'a list -> ’a list list

[sort ordr xs] sorts the list xs in nondecreasing order, using the
given ordering. Uses Richard 0’Keefe’s smooth applicative merge
sort.

[sorted ordr xs] checks that the list xs is sorted in nondecreasing
order, in the given ordering.

[merge ordr (xs, ys)] returns a sorted list of the elements of the
sorted lists xs and ys, preserving duplicates. Both xs and ys must
be already sorted by ordr, that is, must satisfy

sorted ordr xs andalso sorted ordr ys
Then the result satisfies

sorted ordr (merge ordr (xs, ys))

[mergeUniqg ordr (xs, ys)] returns a sorted list of the elements of

the sorted lists xs and ys, without duplicates: no elements in the

result are EQUAL by ordr. Both xs and ys must be already sorted by
ordr.

[eqclasses ordr xs] returns a list [xsl, xs2, ..., xsn] of
non-empty equivalence classes of xs, obtained by sorting the list
and then grouping consecutive runs of elements that are EQUAL by ordr.
If ordr is a total order, then it holds for xi in xsi and xj in xsj:

ordr (xi, xj) = EQUAL iff i=j and

ordr (xi, xj) = LESS iff i<j and

ordr (xi, xj) = GREATER iff i>j
Thus ordr(xi, xJj) = Int.compare(i, j). A list of representatives
for the equivalence classes of xs under ordering ordr can be
obtained by

List.map List.hd (eqgclasses ordr xs)

LOCATION

Module Location

Location -- error reporting for mosmllex and mosmlyac
Based on src/compiler/location from the Caml Light 0.6 distribution

dat

val

val

val
val
val
val
val
val
val
val
val

atype Location = Source file positions
Loc of int Position of the first character

* int Position of the character following the last one
errLocation : string * BasicIO.instream * Lexing.lexbuf -> Location

-> unit

errMsg : string * BasicIO.instream * Lexing.lexbuf -> Location
-> string -> ’a

errPrompt : string -> unit;

nilLocation : Location
getCurrentLocation : unit -> Location
mkLoc : 'a -> Location * ’a

xLR : Location * 'a -> Location

xL : Location * 'a -> int

xR : Location * 'a -> int

xxLR : Location * 'a -> Location * 'b -> Location
xxRL : Location * 'a -> Location * 'b -> Location

These functions support error reporting in lexers and parsers
generated with mosmllex and mosmlyac. The directory
mosml/examples/lexyacc/ contains an example of their use.

[errLocation (file, stream, lexbuf) loc] prints the part of the lexer
input which is indicated by location loc.

If file <> "" then it is assumed to be the name of the file from
which the lexer reads, the stream is assumed to be an open input
stream associated with this file, and lexbuf is the lexer buffer
used to read from the stream. Under MS DOS (and presumably
Windows, 0S/2, and MacOS), the stream must have been opened in
binary mode (with Nonstdio.open_in_bin), or else the positioning in
the file will be wrong (due to the translation of CRLF into

newline in text files).

If file = "" then the lexer is assumed to read from some source
other than a stream, and the lexbuf (rather than the instream) is
used to obtain the location indicated, if possible. 1In this case
the stream is immaterial; it will not be used.

[errMsg (file, stream, lexbuf) loc msg] calls errLocation to print
the indicated part of the lexer input, then prints the error
message msg and raises exception Fail.

[errPrompt msg] prints "! ",
standard output.

the string msg, and a newline on

[nilLocation] is the undefined location.

[getCurrentLocation ()] can be called within the semantic action
part of a grammar rule (only) and returns the location of the
string matching the left-hand side of the rule.

[mkLoc a] can be called within the semantic action part of a
grammar rule (only), and returns a pair (loc, a) of the current
location and the value a. This is typically used to decorate

78

abstract syntax tree nodes with location information, for use in
subsequent error reports.

[xLR loc_a] returns the location of the decorated value loc_a.
[xL loc_a] returns the left end position of loc_a.
[xR loc_a] returns the right end position of loc_a.

[xxLR loc_a loc_b] returns the location extending from the left end
of loc_a to the right end of loc_b.

[xxRL loc_a loc_b] returns the location extending from the right end
of loc_a to the left end of loc_b.

LOCATION

MATH

Module Math

Math -- SML Basis Library

type real = real

val pi ¢ real

val e : real

val sqrt : real -> real

val sin . real -> real

val cos : real -> real

val tan : real -> real

val atan : real -> real

val asin : real -> real

val acos : real -> real

val atan2 : real * real -> real
val exp : real -> real

val pow : real * real -> real
val 1n : real -> real

val logl0 : real -> real

val sinh : real -> real

val cosh : real -> real

val tanh : real -> real

[pi] is the circumference of the circle with diameter 1, that is,
3.14159265358979323846.

[e] is the base of the natural logarithm: 2.7182818284590452354.
[sgqrt x] is the square root of x. Raises Domain if x < 0.0.
[sin r] is the sine of r, where r is in radians.

[cos r] is the cosine of r, where r is in radians.

[tan r] is the tangent of r, where r is in radians. Raises Domain if
r is a multiple of pi/2.0.

[atan t] is the arc tangent of t, in the open interval] ~pi/2.0, pi/2.0 [.

[asin t] is the arc sine of t, in the closed interval [~pi/2.0, pi/2.0].
Raises Domain if abs x > 1.

[acos t] 1s the arc cosine of t, in the closed interval [0, pi].
Raises Domain if abs x > 1.

[atan2(y, x)] is the arc tangent of y/x, in the interval] ~pi, pi 1,
except that atan2(y, 0) = sign y * pi/2.0. The quadrant of the result
is the same as the quadrant of the point (x, y).

Hence sign(cos(atan2(y, x))) = sign x

and sign(sin(atan2(y, x))) = sign y.

[exp x] 1s e to the x'th power.
[pow (x, y)] is x it the y’th power, defined when
y >= 0 and (y integral or x >= 0)

or y < 0 and ((y integral and x <> 0.0) or x > 0).

We define pow(0, 0) = 1.

80

MATH

[In x] is the natural logarithm of x (that is, with base e).
Raises Domain if x <= 0.0.

[logl0 x] is the base-10 logarithm of x. Raises Domain if x <= 0.0.

[sinh x] returns the hyperbolic sine of x, mathematically defined as
(exp x — exp (~x)) / 2.0. Raises Overflow if x is too large.

[cosh x] returns the hyperbolic cosine of x, mathematically defined as
(exp x + exp (~x)) / 2.0. Raises Overflow if x is too large.

[tanh x] returns the hyperbolic tangent of x, mathematically defined
as (sinh x) / (cosh x). Raises Domain if x is too large.

META 81

Module Meta

Meta -- functions available only in interactive Moscow ML sessions
val printval :'a > 'a

val printDepth : int ref

val printLength ¢ int ref

val installPP : (ppstream -> 'a -> unit) -> unit
val liberal : unit -> unit

val conservative : unit -> unit

val orthodox : unit -> unit

val use : string -> unit

val compile : string -> unit

val compileToplevel : string list -> string —-> unit

val compileStructure : string list -> string —-> unit

val load : string -> unit

val loadOne : string -> unit

val loaded : unit -> string list
val loadPath : string list ref

val quietdec : bool ref

val verbose : bool ref

val quotation : bool ref

val valuepoly : bool ref

val quit : unit > 'a

These values and functions are available in the Moscow ML
interactive system only.

[printVal e] prints the value of expression e to standard output
exactly as it would be printed at top-level, and returns the value
of e. Output is flushed immediately. This function is provided as
a simple debugging aid. The effect of printVal is similar to that
of ‘print’ in Edinburgh ML or Umeaa ML. For string arguments, the
effect of SML/NJ print can be achieved by the function

TextIO.print : string -> unit.

[printDepth] determines the depth (in terms of nested constructors,
records, tuples, lists, and vectors) to which values are printed by
the top-level value printer and the function printVal. The components
of the value whose depth is greater than printDepth are printed as
‘#’. The initial value of printDepth is 20. This value can be
changed at any moment, by evaluating, for example,

printDepth := 17;

[printLength] determines the way in which list values are printed

by the top-level value printer and the function printVal. If the

length of a list is greater than printLength, then only the first

printLength elements are printed, and the remaining elements are

printed as ‘...’. The initial value of printLength is 200. This

value can be changed at any moment, by evaluating, for example,
printLength := 500;

[quit ()] quits Moscow ML immediately.

META

[installPP pp] installs the prettyprinter pp : ppstream -> ty -> unit
at type ty. The type ty must be a nullary (parameter-less) type
constructor representing a datatype, either built-in (such as bool)
or user-defined. Whenever a value of type ty is about to be

printed by the interactive system, or function printVal is invoked
on an argument of type ty, the pretty-printer pp will be invoked to
print it. See library unit PP for more information.

[use "f"] causes ML declarations to be read from file f as if they
were entered from the console. A file loaded by use may, in turn,
evaluate calls to use. For best results, use ‘use’ only at top
level, or at top level within a use’d file.

[liberal ()] sets liberal mode for the compilation functions:
accept (without warnings) all extensions to the SML Modules
language. The extensions are: higher—order modules (functors
defined within structures and functors); first-order modules
(structures can be packed as values, and values can be unpacked as
structures); and recursively defined modules (signatures and
structures). The liberal, conservative, and orthodox modes affect
the functions compile, compileStructure, and compileToplevel. The
liberal mode may be set also by the mosml option -liberal.

[conservative ()] sets conservative mode for the compilation
functions: accept all extensions to the SML Modules language, but
issue a warning for each use. The conservative mode may be set
also by the mosml option -conservative. This is the default.

[orthodox ()] sets orthodox mode for the compilation functions:
reject all uses of the extensions to the SML Modules language.
That is, accept only SML Modules syntax. The orthodox mode may be
set also by the mosml option -orthodox.

[compile "U.sig"] will compile and elaborate the specifications in
file U.sig in structure mode, producing a compiled signature U in
file U.ui. This function is backwards compatible with Moscow ML
1.44 and earlier. Equivalent to compileStructure [] "U.sig".

[compile "U.sml"] will elaborate and compile the declarations in
file U.sml in structure mode, producing a compiled structure U in
bytecode file U.uo. If there is an explicit signature file U.sig,
then file U.ui must exist, and the unit body must match the
signature. If there is no U.sig, then an inferred signature file
U.ui will be produced also. No evaluation takes place. This
function is backwards compatible with Moscow ML 1.44 and earlier.
Equivalent to compileStructure [] "U.sml".

The declared identifiers will be reported if verbose is true (see
below); otherwise compilation will be silent. In any case,
compilation warnings are reported, and compilation errors abort the
compilation and raise the exception Fail with a string argument.

[compileStructure opnunits "U.sig"] compiles the specifications
in file U.sig as if they form a signature declaration

signature U = sig ... contents of U.sig ... end
The contents of opnunits is added to the compilation context in
which the specifications in U.sig are compiled. The result is a
compiled signature file U.ui. This
corresponds to invoking the batch compiler as follows:

mosmlc -c Ul.ui ... Un.ul -structure U.sig
where opnunits equals ["U1l", ..., "Un"].

META 83

[compileStructure opnunits "U.sml"] compiles the declarations in
file U.sml as if they formed a structure declaration

structure U = struct ... contents of U.sml ... end
The contents of opnunits is added to the compilation context in
which the declarations in U.sml are compiled. If U.ui exists
already and represents a signature called U, then the compiled
declarations are matched against it. The result is a bytecode file
U.uo. If no file U.ul existed, then also a file U.uil is created,
containing the inferred signature of structure U. This
corresponds to invoking the batch compiler as follows:

mosmlc -c¢ Ul.ui ... Un.ul -structure U.sml
where opnunits equals ["Ul", ..., "Un"].

[compileToplevel opnunits "U.sig"] compiles the specifications in
file U.sig, in a context in which all declarations from opnunits
are visible, creating a compiled signature file U.ui. This
corresponds to invoking the batch compiler as follows:

mosmlc -c Ul.ui ... Un.uil -toplevel U.sig
where opnunits equals ["Ul", ..., "Un"].

[compileToplevel opnunits "U.sml"] compiles the declarations in
file U.sml, in a context in which all declarations from opnunits
are visible, creating a bytecode file U.uo. If U.ui exists
already, then the compiled declarations are matched against it;
otherwise the file U.ui is created. This corresponds to invoking the
batch compiler as follows
mosmlc -c¢c Ul.ui ... Un.ui -toplevel U.sml
where opnunits equals ["Ul1l", ..., "Un"].

[load "U"] will load and evaluate the compiled unit body from file
U.uo. The resulting values are not reported, but exceptions are
reported, and cause evaluation and loading to stop. If U is
already loaded, then load "U" has no effect. If any other unit is
mentioned by U but not yet loaded, then it will be loaded
automatically before U.

After loading a unit, it can be opened with ‘open U’. Opening it
at top-level will list the identifiers declared in the unit.

When loading U, it is checked that the signatures of units
mentioned by U agree with the signatures used when compiling U, and
it is checked that the signature of U has not been modified since U
was compiled; these checks are necessary for type safety. The
exception Fail is raised if these signature checks fail, or if the
file containing U or a unit mentioned by U does not exist.

[loadOne "U"] is similar to ‘load "U"’, but raises exception Fail
if U is already loaded or if some unit mentioned by U is not yet
loaded. That is, it does not automatically load any units

mentioned by U. It performs the same signature checks as ‘load’.

[loaded ()] returns a list of the names of all compiled units that
have been loaded so far. The names appear in some random order.

[loadPath] determines the load path: which directories will be
searched for interface files (.ui files), bytecode files (.uo
files), and source files (.sml files). This variable affects the
load, loadOne, and use functions. The current directory is always
searched first, followed by the directories in loadPath, in order.
By default, only the standard library directory is in the list, but

84

META

if additional directories are specified using option -I, then these
directories are prepended to loadPath.

[quietdec] when true, turns off the interactive system’s prompt and
responses, except warnings and error messages. Useful for writing
scripts in SML. The default value is false; can be set to true
with the -quietdec command line option.

[verbose] determines whether the signature inferred by a call to
compile will be printed. The printed signature follows the syntax
of Moscow ML signatures, so the output of compile "U.sml" can be
edited to subsequently create file U.sig. The default value is
ref false.

[quotation] determines whether quotations and antiquotations are
permitted in declarations entered at top-level and in files
compiled with compile. A quotation is a piece of text surrounded
by backquote characters ‘a b c¢' and is used to embed object
lanqguage phrases in ML programs; see the Moscow ML Owner’s Manual
for a brief explanation of quotations. When quotation is false,
the backquote character is an ordinary symbol which can be used in
ML symbolic identifiers. When quotation is true, the backquote
character is illegal in symbolic identifiers, and a quotation ‘a b
c' will be recognized by the parser and evaluated to an object of
type ’"a General.frag list. False by default.

[valuepoly] determines whether value polymorphism is used or not in
the type checker. With value polymorphism (the default), there is
no distinction between imperative (’_a) and applicative (’a) type
variables, and type variables are generalized only in bindings to
non-expansive expressions. Non-generalized type variables are left
free, to be instantiated when the bound identifier is used. An
expression is non-expansive if it is a variable, a special
constant, a function, a tuple or record of non-expansive
expressions, a parenthesized or typed non-expansive expression, or
the application of an exception or value constructor (other than
ref) to a non-expansive expression. If valuepoly is false, then
the type checker will distinguish imperative and applicative type
variables, generalize all applicative type variables, and
generalize imperative type variables only in non-expansive
expressions. True by default.

MOSML 85

Module Mosml

Mosml -- some Moscow ML specific functions
val argv : unit -> string list

val time : ('a > 'b) > ("a —> 'b)

val listDir : string —> string list

val doubleVec : real -> Word8Vector.vector
val vecDouble : Word8Vector.vector -> real

val floatVec : real -> Word8Vector.vector
val vecFloat : Word8Vector.vector -> real
val md5sum : string -> string

datatype runresult =
Success of string
| Failure of string
val run : string -> string list -> string -> runresult

val systemInfo: string list -> (string * string) list

[argv ()] returns the command line strings of the current process.
Hence List.nth(argv (), 0) is the command used to invoke the SML
process, List.nth(argv (), 1) is its first argument, and so on.

We recommend using the SML Basis Library CommandLine structure instead.

[time f arg] applies f to arg and returns the result; as a side
effect, it prints the time (cpu, system, and real time) consumed by
the evaluation.

[listDir path] returns the list of all files and subdirectories of
the directory indicated by path. Raises 0S.SysErr in case of failure.

[doubleVec r] returns an eight-element vector of Word8.word, which
contains the real number in the IEEE 754 floating-point ‘double
format’ bit layout stored in big-endian (high byte first) order.

[vecDouble v] accepts an eight-element vector v of Word8.word, and
returns the real number obtained by taking v to be an IEEE 754
floating-point ‘double format’ number stored in big-endian (high
byte first) order. Raises Fail if v is not en eight-element
vector.

[floatVec r] returns a four-element vector of Word8.word, which
contains the real number in the IEEE 754 floating-point ‘float
format’ bit layout stored in big-endian (high byte first) order.
Raises Fail if r is not representable as a 32-bit float.

[vecFloat v] accepts a four-element vector v of Word8.word, and
returns the real obtained by taking v to be an IEEE 754
floating-point ‘float format’ number stored in big-endian (high
byte first) order. Raises Fail if v is not a four-element vector.

[md5sum s] computes the 128-bit MD5 checksum of string s and
returns it as a 22 character base64 string.

[run cmd args inp] executes the program cmd with command-line
arqguments args and standard input inp. Returns Success s where s
is the program’s (standard and error) output as a string, if it
executed successfully; otherwise returns Failure s where s is its

86

(standard and error) output as a string.
Extreme care should be taken when calling this function in web

scripts and similar, since the cmd is executed by the shell, so
even the args can be abused for attacks.

[systemInfo query] returns a pair (p, v) for each property p in
query, where v is the value associated with p. If query is the
empty list, then all properties and values are returned. The

property "version" is always guaranteed to have a value associated.

MOSML

MOSMLCGI

Module Mosmlcgi

87

Mosmlcgi -- support for writing CGI scripts in Moscow ML
1. Accessing the fields or parameters of a CGI call

val cgi_fieldnames ¢ string list

val cgi_field_ strings : string -> string list;

val cgi_field_string : string -> string option;

val cgi_field_integer : string * int -> int;

2. Accessing parts in multipart/form-data; form-based file upload

val cgi_partnames : string list
type part

val cgi_part : string -> part
val cgi_parts . string -> part
val part_fieldnames . part -> string
val part_type : part -> string
val part_data . part -> string
val part_field_strings : part -> string
val part_field string : part -> string
val part_field_integer : part -> string

3. Administrative information

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val

val
val
val
val
val
val
val
val
val
val
val

cgi_server_software
cgi_server_name
cgi_gateway_interface
cgi_server_protocol
cgi_server_port
cgi_request_method
cgi_http_accept
cgi_http_user_agent
cgi_http_referer
cgi_path_info
cgi_path_translated
cgi_script_name
cgi_query_string
cgi_remote_host
cgi_remote_addr
cgi_remote_user
cgi_remote_ident
cgi_auth_type
cgi_content_type
cgi_content_length
cgi_annotation_server

cgi_http_cookie
cgi_http_forwarded
cgi_http_host

cgi_http_proxy_connection :

cgi_script_filename
cgi_document_root
cgi_server_admin
cgi_api_version
cgi_the_request
cgi_request_uri
cgi_request_filename

string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string

string
string
string
string
string
string
string
string
string
string
string

option
list

list
option

-> string list
-> string option
* int -> int

option
option
option
option
option
option
option
option
option
option
option
option
option
option
option
option
option
option
option
option
option

option
option
option
option
option
option
option
option
option
option
option

88 MOSMLCGI

val cgi_is_subreq : string option

The Mosmlcgi library is for writing CGI programs in Moscow ML. A
CGI program may be installed on a WWW server and is invoked in
response to HTTP requests sent to the server from a web browser,
typically from an HTML FORM element.

1. Obtaining field values sent from an ordinary HIML form

[cgi_fieldnames] is a list of the names of fields present in the
CGI call message. If field name fnm is in cgi_fieldnames, then
cgi_field string fnm <> NONE.

[cgi_field _strings fnm] is a (possibly empty) list of the strings
bound to field fnm.

[cgi_field string fnm] returns SOME(s) where s is a string bound to
field name fnm, if any; otherwise NONE. Equivalent to
case cgi_field_strings fnm of
[] => NONE
| s ¢ _ => SOME s

[cgi_field_integer (fnm, deflt)] attempts to parse an integer from
field fnm. Returns i if cgi_field string(fnm) = SOME(s) and an
integer 1 can be parsed from a prefix of s; otherwise returns deflt.

2. Obtaining field values sent with ENCTYPE="multipart/form-data"

[cgi_partnames] is a list of the names of the parts of the
multipart/form-data message.

The type part is the abstract type of parts of a message. Each part
may have several fields. 1In this implementation, the field of a
part cannot be a another part itself.

[cgi_parts pnm] is a (possibly empty) list of the parts called pnm.

[cgi_part pnm] is SOME (prt) where prt is a part called pnm, if any;
otherwise NONE. Equivalent to
case cgi_parts pnm of
[] => NONE
| prt :: _ => SOME prt

[part_fieldnames prt] is the list of field names in part pnm.

[part_type prt] is SOME (typ) if the part prt contains a specification
‘Context-Type: typ’; otherwise NONE.

[part_data prt] is the data contained in part prt; for instance, the
contents of a file uploaded via form-based file upload.

[part_field_strings prt fnm] is a (possibly empty) list of the
strings bound to field fnm in part prt.

[part_field_string prt fnm] returns SOME (s) where s is a string
bound to field name fnm in part prt, if any; otherwise NONE.

MOSMLCGI

Equivalent to
case part_field_strings prt fnm of
[] => NONE
| s :: _ => SOME s
[part_field_integer prt (fnm, deflt)] attempts to parse an integer
from field fnm of part prt. Returns i if part_field string prt fnm

= SOME (s) and an integer i can be parsed from a prefix of s;
otherwise returns deflt.

3. Administrative and server information

Each of the following variables has the value SOME(s) if the
corresponding CGI environment variable is bound to string s;
otherwise NONE:

[cgi_server_software] is the value of SERVER_SOFTWARE
[cgi_server_name] is the value of SERVER_NAME
[cgi_gateway_interface] is the value of GATEWAY_INTERFACE
[cgi_server_protocol] is the value of SERVER_PROTOCOL
[cgi_server_port] is the value of SERVER_PORT
[cgi_request_method] is the value of REQUEST_METHOD
[cgi_http_accept] is the value of HTTP_ACCEPT
[cgi_http_user_agent] is the value of HTTP_USER_AGENT
[cgi_http_referer] is the value of HTTP_REFERER
[cgi_path_info] is the value of PATH_INFO
[cgi_path_translated] is the value of PATH_TRANSLATED
[cgi_script_name] is the value of SCRIPT_NAME
[cgi_query_string] is the value of QUERY_STRING
[cgi_remote_host] is the value of REMOTE_HOST
[cgi_remote_addr] is the value of REMOTE_ADDR
[cgi_remote_user] is the value of REMOTE_USER
[cgi_remote_ident] is the value of REMOTE_IDENT
[cgi_auth_type] is the value of AUTH_TYPE
[cgi_content_type] is the value of CONTENT_TYPE

[cgi_content_length] is the value of CONTENT_LENGTH, that is, the
length of the data transmitted in the CGI call.

[cgi_annotation_server] is the value of ANNOTATION_SERVER

89

90

[cgi_http_cookie] is the value of HTTP_COOKIE
[cgi_http_forwarded] is the value of HTTP_FORWARDED
[cgi_http_host] is the value of HTTP_HOST
[cgi_http_proxy_connection] is the value of HTTP_PROXY_CONNECTION
[cgi_script_filename] is the value of SCRIPT_FILENAME
[cgi_document_root] is the value of DOCUMENT_ROOT
[cgi_server_admin] is the value of SERVER_ADMIN
[cgi_api_version] is the value of API_VERSION
[cgi_the_request] is the value of THE_REQUEST
[cgi_request_uri] is the value of REQUEST_URI
[cgi_request_filename] is the value of REQUEST_FILENAME

[cgi_is_subreq] is the value of IS_SUBREQ

MOSMLCGI

MOSMLCOOKIE 91

Module Mosmlcookie
Mosmlcookie -- getting and setting cookies in CGI scripts

exception CookieError of string

val allCookies : string list
val getCookieValue : string -> string option
val getCookie : string -> string option

type cookiedata =
{ name : string,
value : string,
expiry : Date.date option,
domain : string option,
path : string option,
secure : bool }

val setCookie : cookiedata -> string
val setCookies : cookiedata list -> string

val deleteCookie : { name : string, path : string option } -> string

These functions may be used in CGI scripts to get and set cookies.
(c) Hans Molin, Computing Science Dept., Uppsala University, 1999.

[getCookieValue ck] returns SOME (v) where v is the value associated
with the cookie ck, if any; otherwise returns NONE.

[getCookie ck] returns SOME (nv) where nv is the ck=value string
for the cookie ck, if any; otherwise returns NONE.

[allCookies] is a list [nvl, nv2, ..., nvm] of all the ck=value
pairs of defined cookies.

[setCookie { name, value, expiry, domain, path, secure }] returns a
string which (when transmitted to a browser as part of the HITP
response header) sets a cookie with the given name, value, expiry
date, domain, path, and security.

[setCookies ckds] returns a string which (when transmitted to a
browser as part of the HTTP response header) sets the specified cookies.

[deleteCookie { name, path }] returns a string which (when
transmitted to a browser as part of the HITP response header)
deletes the specified cookie by setting its expiry to some time in
the past.

92

MSP

Module Msp

Msp -- utilities for CGI scripts and ML Server Pages

Efficiently concatenable word sequences

datatype wseq =

Empty The empty sequence

N1 Newline

$ of string A string

$$ of string list A sequence of strings

&& of wseq * wseq; Concatenation of sequences

Manipulating wseqgs

val prmap
val prsep
val flatten
val printseq :
val vec2list

("a -> wseq) —> ’"a list -> wseq

: wseq —> ('a -> wseq) —> 'a list -> wseq
: wseq —-> string

wseq —> unit
"a vector -> ’'a list

Shorthands for accessing CGI parameters

exception ParamMissing of string
exception NotInt of string * string

val
val
val
val
val

HTML generic

val
val
val
val
val

o\® o\ o\ o\ o\

o\° o\© H=)

mark0
markOa
markl
markla
comment

string -> string

string -> bool

string -> int

string * string -> string
string * int -> int

marks

string -> wseq

string -> string -> wseq

string -> wseg -> wseq

string -> string -> wseq -> wseq

: wseq —> wseq

HTML documents and headers

val
val
val
val
val
val

html
head
title
body
bodya
htmldoc

: wseq —> wseq
: wseq —> wseq
1 wseq —> wseq
: wseq —> wseq

string -> wseqg -> wseq

: wseq —> wseq —> wseq

HTML headings and vertical format

val
val
val
val
val
val
val
val

: wseq —> wseq
: wseq —-> wseq
: wseq -> wseq
: wseq —> wseq
: wseq —> wseq
: wseq —> wseq
1 wseq —> wseq

string -> wseqg -> wseq

MSP

val br
val bra
val hr
val hra

val divi
val divia
val blockquote

val blockquotea :

val center
val address
val pre

HTML anchors and hyperlinks

val ahref
val ahrefa
val aname

HTML text formats and style

val em

val strong
val tt

val sub
val sup
val fonta

HTML 1ists

val ul
val ula
val ol
val ola
val 1i
val dl
val dla
val dt
val dd

HTML tables

val table
val tablea
val tr

val tra

val td

val tda

val th

val tha

val caption
val captiona :

HTML images and image maps

val img
val imga
val map
val mapa
val area

T wseq

string -> wseq

1 wseq

string -> wseq

: wseq —> wseq

string -> wseq -> wseq

: wseq —-> wseq

: wseq —-> wseq
: wseq —-> wseq
: wseq —> wseq

string -> wseq -> wseq
string -> string -> wseq -> wseq
string -> wseq -> wseq

: wseq —> wseq
1 wseq —> wseq
: wseq —> wseq
: wseq —> wseq
: wseq —> wseq

string -> wseq

: wseq —> wseq

string -> wseq

: wseq —> wseq

string -> wseq

1 wseq —> wseq
1 wseq —> wseq

string -> wseq

: wseq —> wseq
: wseq —> wseq

: wseq —> wseq

string -> wseq

: wseqg —> wseq

string -> wseq

: wseq —> wseq

string -> wseq

: wseq —-> wseq

string -> wseq

: wseq —> wseq

string -> wseq

string -> wseq

string -> string -> wseq

string -> wseq -> wseq

string -> string -> wseq -> wseq

{ alt : string option, coords
href : string option, shape

string -> wseq -> wseq

string,
string} -> wseq

93

94

HTML forms etc

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val

form : string -> wseq -> wseq

forma : string -> string -> wseq -> wseq
input : string -> wseq

inputa ¢ string —> string —> wseq

intext : string —-> string -> wseq

inpassword : string -> string -> wseq

incheckbox : {name : string, value : string} -> string -> wseq
inradio : {name : string, value : string} -> string -> wseq
inreset : string —-> string -> wseq

insubmit : string -> string -> wseq

inhidden : {name : string, value : string} -> wseq

textarea : string -> wseq -> wseq

textareaa : string -> string -> wseq -> wseq

select : string -> string -> wseq -> wseq

option : string —> wseq

HTML frames and framesets

val
val
val

frameset : string -> wseq -> wseq
frame : { src : string, name : string } -> wseq
framea : { src : string, name : string } -> string -> wseq

HTML encoding

val
val

urlencode : string -> string
htmlencode : string -> string

MSP

This module provides support functions for writing CGI scripts and
ML Server Page scripts.

[wseq] is the type of efficiently concatenable word sequences.
Building an HIML page (functionally) as a wseqg is more efficient
than building it (functionally) as a string, and more convenient
and modular than building it (imperatively) by calling print.

[Empty] represents the empty string "".

[N1] represents the string "\n" consisting of a single newline character.

[$ s] represents the string s.
[$$ ss] represents the string String.concat (ss).

[&& (wsl, ws2)] represents the concatenation of the strings
represented by wsl and ws2. The function && should be declared

infix &&
[prmap f xs] is f x1 && ... && f xn evaluated from left to right,
when xs is [x1, ..., xn].
[prsep sep f xs] is f x1 && sep && ... && sep && f xn, evaluated
from left to right, when xs is [x1, ..., xn].

[flatten ws] is the string represented by ws.

[printseq ws] is equivalent to print(flatten ws), but avoids

MSP

building any new strings.

[vec2list vec] is a list of the elements of vector vec. Use it to
convert e.g. the results of a database query into a list, for
processing with prmap or prsep.

Shorthands for accessing CGI parameters:

[%? fnm] returns true if there is a string associated with CGI
parameter fnm; otherwise returns false.

[$ fnm] returns a string associated with CGI parameter fnm if there
is any; raises ParamMissing(fnm) if no strings are associated with
fnm. Equivalent to
case Mosmlcgi.cgi_field_string fnm of
NONE => raise ParamMissing "fnm"
| SOME v => v
In general, multiple strings may be associated with a CGI parameter;
use Mosmlcgi.cgi_field strings if you need to access all of them.

[$# fnm] returns the integer i if there is a string associated with
CGI parameter fnm, and that string is parsable as ML integer 1i.
Raises ParamMissing(fnm) if no string is associated with fnm.
Raises NotInt (fnm, s) if there is a string but it is not parsable
as an ML int.

[$% (fnm, dflt)] returns a string associated with CGI parameter fnm
if there is any; otherwise returns the string dflt.

[$%# (fnm, dflt)] returns the integer i if there is a string
associated with CGI parameter fnm, and that string is parsable as
an ML int; otherwise returns the string dflt.

HTML generic marks:

[mark0 t] generates the HIML tag <t> as a wseq.

[markOa attr t] generates the attributed HIML tag <t attr> as a wseq.

[markl t ws] generates <t>ws</t> as a wseq.
[markla attr t ws] generates <t attr>ws</t> as a wseq.

[comment ws] generates <!--ws--> as a wseq.

HTML documents and headers:

[html ws] generates <HTML>ws</HTML>.

[head ws] generates <HEAD>ws</HEAD>.

[title ws] generates <TITLE>ws</TITLE>.

[body ws] generates <BODY>ws</BODY>.

[bodya attr ws] generates <BODY attr>ws</BODY>.

[htmldoc titl ws] generates

95

96

<HTML><HEAD><TITLE>tit1</TITLE></HEAD><BODY>ws</BODY></HTML>.

HTML headings and vertical format:

[h1 ws] generates <HI>ws</HI1>.

[p ws] generates <P>ws</P>.

[pa attr ws] generates <P attr>ws</P>.

[br] generates
.

[bra attr] generates <BR attr>.

[hr] generates <HR>.

[hra attr] generates <HR attr>.

[divi ws] generates <DIV>ws</DIV>.

[divia attr ws] generates <DIV attr>ws</DIV>.
[blockquote ws] generates <BLOCKQUOTE>ws</BLOCKQUOTE>.
[blockquotea attr ws] generates <BLOCKQUOTE attr>ws</BLOCKQUOTE>
[center ws] generates <CENTER>ws</CENTER>.

[address ws] generates <ADDRESS>ws</ADDRESS>.

[pre ws] generates <PRE>ws</PRE>.

HTML anchors and hyperlinks:
[ahref link ws] generates ws.
[ahrefa link attr ws] generates ws.

[aname nam ws] generates ws.

HTML text formats and style:

[em ws] generates ws.

[strong ws] generates ws.
[tt ws] generates <TT>ws</TT>.

[sub ws] generates _{ws}.

[sup ws] generates ^{ws}.

[fonta attr ws] generates ws.

HTML lists:

[ul ws] generates ws.

MSP

MSP

[ula attr ws] generates <UL attr>ws.
[0l ws] generates ws.
[ola attr ws] generates <OL attr>ws</0L>.
[11i ws] generates ws.
[dl ws] generates <DL>ws</DL>.
[dla attr ws] generates <DL attr>ws</DL>.
[dt ws] generates <DT>ws</DT>.

[dd ws] generates <DD>ws</DD>.

HTML tables:

[table ws] generates <TABLE>ws</TABLE>.

[tablea attr ws] generates <TABLE attr>ws</TABLE>.
[tr ws] generates <TR>ws</TR>.

[tra attr ws] generates <TR attr>ws</TR>.

[td ws] generates <TD>ws</TD>.

[tda attr ws] generates <TD attr>ws</TD>.

[th ws] generates <TH>ws</TH>.

[tha attr ws] generates <TH attr>ws</TH>.

[caption ws] generates <CAPTION>ws</CAPTION>.

[captiona attr ws] generates <CAPTION attr>ws</CAPTION>.

HTML images and image maps:
[img s] generates .
[imga s attr] generates .
[map nam ws] generates <MAP NAME="name">ws</MAP>.
[mapa nam attr ws] generates <MAP NAME="name" attr>ws</MAP>.
[area { alt, coords, href, shape}] generates
<AREA SHAPE="shape" COORDS="coords" HREF="1link" ALT="desc">
when href is SOME link (where HREF is replaced by NOHREF otherwise)
and alt 1s SOME desc (where ALT is omitted otherwise).

HTML forms etc:

[form act ws] generates <FORM ACTION="act">ws</FORM>.

97

98

[forma act attr ws] generates <FORM ACTION="act" attr>ws</FORM>.
[input typ] generates <INPUT TYPE=typ>.
[inputa typ attr] generates <INPUT TYPE=typ attr>.

[intext name attr] generates <INPUT TYPE=TEXT NAME="name" attr>.

[inpassword name attr] generates <INPUT TYPE=PASSWORD NAME="name" attr>.

[incheckbox {name, value} attr] generates
<INPUT TYPE=CHECKBOX NAME="name" VALUE="value" attr>.

[inradio {name, value} attr] generates
<INPUT TYPE=RADIO NAME="name" VALUE="value" attr>.

[inreset value attr] generates <INPUT TYPE=RESET VALUE="value" attr>.
[insubmit value attr] generates <INPUT TYPE=SUBMIT VALUE="value" attr>.

[inhidden {name, value}] generates
<INPUT TYPE=HIDDEN NAME="name" VALUE="value">.

[textarea name ws] generates <TEXTAREA NAME="name">ws</TEXTAREA>.

[textareaa name attr ws] generates
<TEXTAREA NAME="name" attr>ws</TEXTAREA>.

[select name attr ws] generates <SELECT NAME="name" attr>ws</SELECT>.

[option value] generates <OPTION VALUE="value">.

HTML frames and framesets:
[frameset attr ws] generates <FRAMESET attr>ws</FRAMESET>.

[frame { src, name }] generates <FRAME SRC="src" NAME="name">.

[framea { src, name } attr] generates <FRAME SRC="src" NAME="name" attr>.

HIML encoding functions:

[urlencode s] returns the url-encoding of s. That is, space (ASCII 32)
is replaced by ‘+’ and every non-alphanumeric character c except

the three characters hyphen (-), underscore (_) and full stop (.)

is replaced by %hh, where hh is the hexadecimal representation of

the ASCII code of c.

[htmlencode s] returns the html-encoding of s. That is, < and >
are replaced by < and > respectively, and & is replaced by
&

MSP

MYSQL 99

Module Mysql

Mysgl -- interface to the MySQL database server -- requires Dynlib
type dbconn Connection to server

type dbresult Result of a query

eqtype oid (not used by Mysqgl)
exception Closed Connection is closed
exception Null Field value is NULL

Opening, closing, and maintaining database connections

val openbase : { dbhost : string option, database server host
dbname : string option, database name
dboptions : string option, (not used by Mysqgl)
dbport : string option, database server port
dbpwd : string option, user passwd
dbtty : string option, (not used by Mysqgl)
dbuser : string option database user

} => dbconn

val closebase : dbconn -> unit

val db : dbconn -> string

val host : dbconn -> string option
val options : dbconn -> string

val port : dbconn -> string

val tty : dbconn -> string

val status : dbconn -> bool

val reset : dbconn -> unit

val errormessage : dbconn -> string option
Query execution and result set information

datatype dbresultstatus =

Bad_response (not used by Mysqgl)
| Command_ok The query was a command
| Copy_in (not used by Mysqgl)
| Copy_out (not used by Mysqgl)
| Empty_query
| Fatal_error (not used by Mysqgl)
| Nonfatal_error
| Tuples_ok The query successfully returned tuples
val execute : dbconn -> string -> dbresult
val resultstatus : dbresult -> dbresultstatus
val ntuples : dbresult -> int
val cmdtuples : dbresult -> int
val nfields : dbresult -> int
val fname : dbresult -> int -> string
val fnames : dbresult -> string vector
val fnumber : dbresult -> string -> int option

Accessing the fields of a resultset

val getint : dbresult -> int -> int -> int
val getreal : dbresult —> int -> int -> real
val getstring : dbresult -> int -> int -> string

val getdate : dbresult -> int -> int -> int * int * int Y M D

100

val gettime

val getdatetime
val getbool

val isnull

datatype dynval =
Bool of bool
Int of int
Real of real

: dbresult
: dbresult
: dbresult
: dbresult

String of string
Date of int * int * int

DateTime of Date.date

0id of oid

-> int —>
-> int -—>
-> int —>
-> int —>

Bytea of Word8Array.array

Nullval

val getdynfield
val getdyntup
val getdyntups
val dynval2s

|
\
|
\
| Time of int * int * int
\
|
\
\

: dbresult
: dbresult
: dbresult -> dynval vector vector
: dynval -> string

-> int ->
-> int —>

Bulk copying to or from a table

val copytableto
val copytablefrom

: dbconn * string *
: dbconn * string *

MYSQL

int -> int * int * int HMS
int -> Date.date

int -> bool

int -> bool

(not used by Mysqgl)

Mysqgl
Mysqgl
Mysqgl
Mysqgl
Mysqgl
Mysqgl

int4

float8 (float4)
text (varchar)
date yyyy-mm-dd
time hh:mm:ss
datetime

(not used by Mysqgl)
(not used by Mysqgl)
Mysqgl NULL value

int -> dynval
dynval vector

(string -> unit) -> unit
((string -> unit) -> unit) -> unit

Some standard ML and MySQL types:

datatype dyntype =
BoolTy

| IntTy

| RealTy

| StringTy

| DateTy

| TimeTy

| DateTimeTy

| 0idTy

| ByteArrTy

\

ML
ML
ML
ML
ML
ML
ML
ML
ML

UnknownTy of oid

bool

int

real
string
(yyyy, mt
(hh, mm,
Date.date
oid

Word8Array.array

val fromtag : dyntype -> string
val ftype : dbresult -> int -> dyntype

val ftypes : dbresult -> dyntype Vector.vector

val applyto : "a —>

("a => 'b) -> 'b

h, day)
ss)

(not used by Mysqgl)
Mysql int4

Mysql float8, float4
Mysqgl text, varchar
Mysqgl date

Mysqgl time

Mysqgl datetime, abstime
(not used by Mysqgl)

(not used by Mysqgl)

Formatting the result of a database query as an HTML table

val formattable : dbresult -> Msp.wseq
val showquery : dbconn -> string -> Msp.wseq

[dbconn] is the type of connections to a MySQL database.

[dbresult] is the type of result sets from MySQL queries.

[openbase { dbhost, dbport, dboptions, dbtty, dbname, dbuser, dbpwd }]
opens a connection to a MySQL database server on the given host

MYSQL 101

(default the local one) on the given port (default ?), to the given
database (defaults to the user’s login name), for the given user
name (defaults to the current user’s login name), and the given
password (default none). The result is a connection which may be
used in subsequent queries. In MySQL, unlike PostgreSQL, the
dboptions and dbtty fields are not used.

[closebase dbconn] closes the database connection. No further
queries can be executed.

[db dbconn] returns the name of the database.

[host dbconn] returns SOME h, where h is the database server host
name, if the connection uses the Internet; returns NONE if the
connection is to a socket on the local server.

[options dbconn] returns the options given when opening the database.
[port dbconn] returns the port number of the connection.

[tty dbconn] returns the name of the tty used for logging.

[status dbconn] returns true if the connection is usable, false
otherwise.

[reset dbconn] attempts to close and then reopen the connection to
the database server.

[errormessage dbconn] returns NONE if no error occurred, and SOME msg
if an error occurred, where msg describes the error.

[execute dbconn query] sends an SQL query to the database server
for execution, and returns a resultset dbres.

[resultstatus dbres] returns the status of the result set dbres.
After a select query that succeeded, it will be Tuples_ok.

[ntuples dbres] returns the number of tuples in the result set
after a query.

[cmdtuples dbres] returns the number of tuples affected by an
insert, update, or delete SQL command.

[nfields dbres] returns the number of fields in each tuple after a
query.

[fname dbres fno] returns the name of field number fno (in the
result set after a query). The fields are numbered 0, 1,...

[fnames dbres] returns a vector of the field names (in the result
set after a query).

[fnumber dbres fname] returns SOME i where i is the number (0, 1,
.) of the field called fname (in the result set after a query),
if the result set contains such a field name; returns NONE otherwise.

[ftype dbres fno] returns the dyntype of field number fno (in the
result set after a query).

[ftypes dbres] returns a vector of the dyntypes (in the result set
after a query).

102 MYSQL

[fromtag dt] returns the name of the preferred MySQL type used
to represent values of the dyntype dt. This may be used when
building ‘create table’ statements.

[getint dbres fno tupno] returns the integer value of field number
fno in tuple tupno of result set dbres. Raises Null if the value
is NULL.

[getreal dbres fno tupno] returns the floating-point value of field
number fno in tuple tupno of result set dbres. Raises Null if the
value is NULL.

[getstring dbres fno tupno] returns the string value of field
number fno in tuple tupno of result set dbres. Raises Null if the
value is NULL.

[getdate dbres fno tupno] returns the date (yyyy, mth, day) value
of field number fno in tuple tupno of result set dbres. Raises
Null if the value is NULL. Raises Fail if the field cannot be
scanned as a date.

[gettime dbres fno tupno] returns the time-of-day (hh, mm, ss)
value of field number fno in tuple tupno of result set dbres.
Raises Null if the value is NULL. Raises Fail if the field cannot
be scanned as a time.

[getdatetime dbres fno tupno] returns the Date.date value of field
number fno in tuple tupno of result set dbres. Raises Null if the
value is NULL. Raises Fail if the field cannot be scanned as a
date.

[getbool dbres fno tupno] returns the boolean value of field number
fno in tuple tupno of result set dbres. Raises Null if the value
is NULL.

[isnull dbres fno tupno] returns true if the value of field number
fno in tuple tupno of result set dbres is NULL; false otherwise.

[getdynfield dbres fno tupno] returns the value of field number fno
in tuple tupno of result set dbres as a dynval (a wrapped value).
A NULL value is returned as NullVal. Note that the partial
application (getdynfield dbres fno) precomputes the type of the
field fno. Hence it is far more efficient to compute

let val getfno = getdynfield dbres fno

in tabulate(ntuples dbres, getfno) end
than to compute

let fun getfno tupno = getdynfield dbres fno tupno

in tabulate(ntuples dbres, getfno) end
because the latter repeatedly computes the type of the field.

[getdyntup dbres tupno] returns the fields of tuple tupno in result
set dbres as a vector of dynvals.

[getdyntups dbres] returns all tuples of result set dbres as a
vector of vectors of dynvals.

[dynval2s dv] returns a string representing the dynval dv.

[applyto x f] computes f(x). This is convenient for applying
several functions (given in a list or vector) to the same value:

MYSQL 103

map (applyto 5) (tabulate(3, getdynfield dbres))
equals
[getdynfield dbres 0 5, getdynfield dbres 1 5, getdynfield dbres 2 5]

[copytableto(dbconn, tablename, put)] simulates a PostgreSQL "COPY
TABLE TO" statement, applies the function put to every tuple of the
table, represented as a line of text (not terminated by newline
\n), and cleans up at the end. For instance, to copy the contents
of a table t to a text stream s (one tuple on each line), define

fun put line =

(TextIO.output (s, line); TextIO.output(s, "\n"))

and execute

copytableto (dbconn, "t", put).

[copytablefrom(dbconn, tablename, useput)] simulates a PostgreSQL
"COPY TABLE FROM" statement, creates a put function for copying
lines to the table, passes the put function to useput, and cleans
up at the end. The put function may be called multiple times for
each line (tuple); the end of each line is indicated by the
newline character "\n" as usual. For instance, to copy the
contents of a text stream s to a table t, define

fun useput put =

while not (TextIO.endOfStream s) do put (TextIO.inputLine s);

and execute

copytablefrom(dbconn, "t", useput).
Note that TextIO.inputLine preserves the newline at the end of each
line.

[formattable dbresult] returns a wseq representing an HTML table.
The HIML table has a column for every field in the dbresult. The
first row is a table header giving the names of the fields in the
dbresult. The remaining rows correspond to the tuples in the
dbresult, in the order they are provided by the database server.
Null fields are shown as NULL.

[showquery dbconn query] sends the SQL query to the database
server, then uses formattable to format the result of the query.

104

Module NJ93

NJ93

NJ93 -- compatibility SML/NJ 0.93 top-level environment

val print string -> unit

NJ93 Integer

val max int * int -> int
val min int * int -> int
NJ93 List

exception Hd and Tl and Nth and NthTail

val hd "a list -> 'a Hd

val tl "a list -> 'a list T1

val nth "a list * int -> 'a Nth

val nthtail "a list * int -> 'a list NthTail
val app "a => 'b) -> ’'a list -> unit

val revapp

val revfold

NJ93 Real

val ceiling : real -> int

val truncate : real -> int
NJ93 Ref

val inc int ref -> unit
val dec int ref -> unit

NJ93 String

exception Substring

val ordof string * int -> int
val ord string -> int
val chr int -> string

val substring :
val explode
val implode

string * int * int -> string
string -> string list
string list -> string

NJ93 top-level math functions

val sqrt : real -> real
val sin : real -> real
val cos : real -> real
val arctan : real —> real
val exp real -> real
val 1n : real -> real

NJ93 top-level input/output, standard
type instream and outstream
instream

string -> instream
instream * int -> string

val std_in
val open_in
val input

(
: ("a => 'b) -> 'a list -> unit
val fold : ("a*'b ->'b) => 'a list => 'b > 'Db
(a * 'b => 'b) -> 'a list -> 'b -> 'b

Ord
Chr
Substring

NJ93

val
val
val

val
val
val
val

lookahead
close_in

end_of_stream :

std_out
open_out
output
close_out

instream -> string
instream -> unit
instream -> bool

outstream

string -> outstream
outstream * string -> unit
outstream -> unit

NJ93 top-level input/output, non-standard

val
val
val
val
val
val
val
val
val

open_in_bin
open_out_bin
inputc
std_err
outputc
flush_out
input_line
can_input
open_append

string -> instream

string -> outstream
instream -> int -> string
outstream

outstream -> string -> unit
outstream -> unit

instream -> string
instream * int -> bool
string -> outstream

105

106 NONSTDIO

Module Nonstdio

Nonstdio -- non-standard I/0O -- use BinIO and TextIO instead

local open BasicIO in

val open_in_bin : string -> instream

val buff_input : instream -> CharArray.array -> int -> int -> int
val input_char : instream -> char Raises Size

val input_binary_int : instream -> int

val input_value : instream -> 'a

val seek_in : instream -> int -> unit

val pos_in . instream -> int

val in_stream_length : instream -> int

val fast_really_input : instream -> string -> int -> int -> unit

val open_out_bin : string -> outstream

val open_out_exe : string -> outstream

val output_char : outstream -> Char.char -> unit

val output_byte : outstream -> int -> unit

val buff_output : outstream -> CharArray.array -> int -> int -> unit
val output_binary_int : outstream -> int -> unit

val output_value . outstream -> 'a -> unit

val seek_out : outstream -> int -> unit

val pos_out : outstream -> int

val file_exists : string -> bool

end

(0N

Module OS

OS -- SML Basis Library
signature 0S = sig

type syserror = syserror

exception SysErr of string * syserror option

val errorMsg : syserror -> string

structure FileSys : FileSys
structure Path : Path
structure Process : Process

end

107

[errorMsg err] returns a string explaining the error message system

error code err, as found in a SysErr exception.
of the string depends on the operating system.

The precise form

108

OPTION

Module Option

Option -- SML Basis Library

exception Option

datatype option = datatype option

val
val
val
val
val
val
val
val
val
val

getOpt : 'a option * 'a -> 'a

isSome : "a option -> bool

valOof : 'a option -> 'a

filter : ("a => bool) -> 'a -> "a option

(
map ("a -> 'b) -> "a option -> 'b option
app : ("a -> unit) -> 'a option -> unit
join : "a option option -> ’a option
D
(
(

compose "a => 'b) * ('c -> "a option) -> ('c -> 'b option)
mapPartial "a -> "b option) -> ('a option -> 'b option)
composePartial "a => 'b option) * ('c -> "a option) -> (‘c -> b option)

[getOpt (xopt, d)] returns x if xopt is SOME x; returns d otherwise.
[isSome vopt] returns true if xopt is SOME x; returns false otherwise.
[valOf vopt] returns x if xopt is SOME x; raises Option otherwise.

[filter p x] returns SOME x if p x is true; returns NONE otherwise.

[map f xopt] returns SOME (f x) if xopt is SOME x; returns NONE otherwise.
[app f xopt] applies f to x if xopt is SOME x; does nothing otherwise.
[join xopt] returns x if xopt is SOME x; returns NONE otherwise.

[compose (f, g) x] returns SOME (f y) if g x is SOME y; returns NONE
otherwise. It holds that compose (f, g) = map f o g.

[mapPartial f xopt] returns f x if xopt is SOME x; returns NONE otherwise.
It holds that mapPartial f = join o map f.

[composePartial (f, g) x] returns f y if g x is SOME y; returns NONE
otherwise. It holds that composePartial (f, g) = mapPartial f o g.

The operators (map, join, SOME) form a monad.

PP 109

Module PP

PP -- pretty-printing -- from the SML/NJ library

type ppconsumer = { consumer : string -> unit,
linewidth : int,
flush : unit -> unit }

datatype break_style =

CONSISTENT

| INCONSISTENT
val mk_ppstream : ppconsumer -> ppstream
val dest_ppstream : ppstream -> ppconsumer
val add_break : ppstream -> int * int -> unit
val add_newline : ppstream -> unit
val add_string : ppstream -> string -> unit
val begin_block : ppstream -> break_style -> int -> unit
val end_block . ppstream -> unit

val clear_ppstream : ppstream -> unit

val flush_ppstream : ppstream -> unit

val with_pp : ppconsumer -> (ppstream -> unit) -> unit

val pp_to_string : int -> (ppstream -> "a -> unit) -> 'a -> string

This structure provides tools for creating customized Oppen-style
pretty-printers, based on the type ppstream. A ppstream is an
output stream that contains prettyprinting commands. The commands
are placed in the stream by various function calls listed below.

There following primitives add commands to the stream:
begin_block, end_block, add_string, add_break, and add_newline.
All calls to add_string, add_break, and add_newline must happen
between a pair of calls to begin_block and end_block must be
properly nested dynamically. All calls to begin_block and
end_block must be properly nested (dynamically).

[ppconsumer] is the type of sinks for pretty-printing. A value of
type ppconsumer is a record

{ consumer : string -> unit,
linewidth : int,
flush : unit -> unit }

of a string consumer, a specified linewidth, and a flush function
which is called whenever flush_ppstream is called.

A prettyprinter can be called outright to print a value. 1In
addition, a prettyprinter for a base type or nullary datatype ty
can be installed in the top-level system. Then the installed
prettyprinter will be invoked automatically whenever a value of
type ty is to be printed.

[break_style] is the type of line break styles for blocks:

[CONSISTENT] specifies that if any line break occurs inside the
block, then all indicated line breaks occur.

[INCONSISTENT] specifies that breaks will be inserted to only to
avoid overfull lines.

[mk_ppstream {consumer, linewidth, flush}] creates a new ppstream
which invokes the consumer to output text, putting at most

110

linewidth characters on each line.

[dest_ppstream ppstrm] extracts the linewidth, flush function, and
consumer from a ppstream.

[add_break ppstrm (size, offset)] notifies the pretty-printer that
a line break is possible at this point.
* When the current block style is CONSISTENT:
** if the entire block fits on the remainder of the line, then
output size spaces; else
** increase the current indentation by the block offset;
further indent every item of the block by offset, and add
one newline at every add_break in the block.
* When the current block style is INCONSISTENT:
** if the next component of the block fits on the remainder of
the line, then output size spaces; else
** issue a newline and indent to the current indentation level
plus the block offset plus the offset.

[add_newline ppstrm] issues a newline.
[add_string ppstrm str] outputs the string str to the ppstream.

[begin_block ppstrm style blockoffset] begins a new block and
level of indentation, with the given style and block offset.

[end_block ppstrm] closes the current block.

[clear_ppstream ppstrm] restarts the stream, without affecting the
underlying consumer.

[flush_ppstream ppstrm] executes any remaining commands in the
ppstream (that is, flushes currently accumulated output to the
consumer associated with ppstrm); executes the flush function
associated with the consumer; and calls clear_ppstream.

[with_pp consumer f] makes a new ppstream from the consumer and
applies f (which can be thought of as a producer) to that
ppstream, then flushes the ppstream and returns the value of f.

[pp_to_string linewidth printit x] constructs a new ppstream
ppstrm whose consumer accumulates the output in a string s. Then
it evaluates (printit ppstrm x) and finally returns the string s.

Example 1: A simple prettyprinter for Booleans:

load "PP";
fun ppbool pps d =
let open PP
in
begin_block pps INCONSISTENT 6;
add_string pps (if d then "right" else "wrong");
end_block pps
end;

Now one may define a ppstream to print to, and exercise it:
val ppstrm = PP.mk_ppstream {consumer =

fn s => TextIO.output (TextIO.stdOut,
linewidth = 72,

S) .,

PP

PP

flush =
fn () => TextIO.flushOut TextIO.stdOut};

fun ppb b = (ppbool ppstrm b; PP.flush_ppstream ppstrm);

- ppb false;
wrong> val it = () : unit

The prettyprinter may also be installed in the toplevel system;
then it will be used to print all expressions of type bool
subsequently computed:

installPP ppbool;

> val it = () : unit

- 1=0;

> val it = wrong : bool
- 1=1;

> val it = right : bool

See library Meta for a description of installPP.

Example 2: Prettyprinting simple expressions (examples/pretty/ppexpr.sml):

datatype expr =
Cst of int
| Neg of expr
| Plus of expr * expr

fun ppexpr pps el =

let open PP
fun ppe (Cst 1) = add_string pps (Int.toString 1)
| ppe (Neg e) = (add_string pps "~"; ppe e)

| ppe (Plus(el, e2)) (begin_block pps CONSISTENT O0;
add_string pps " (";

ppe el;

add_string pps " + ";
add_break pps (0, 1);

ppe e2;

add_string pps ")";

end_block pps)

in
begin_block pps INCONSISTENT 0;
ppe €0;
end_block pps
end
val _ = installPP ppexpr;

Some example values:

val el = Cst 1;
val e2 = Cst 2;
val e3 = Plus(el, Neg e2);
val e4 = Plus(Neg e3, e3);
val e5 = Plus(Neg e4, ed);
val e6 = Plus(eb, eb);
val e7 = Plus(e6, e6);
val e8 =
Plus (e3, Plus(e3, Plus(e3, Plus(e3, Plus(e3, Plus(e3, e7))))));

111

112 PARSING

Module Parsing

Parsing -- runtime library for parsers generated by mosmlyac
Based on the runtime library for camlyacc; copyright 1993 INRIA, France

local open Vector Obj Lexing in

val symbolStart : unit -> int

val symbolEnd : unit -> int
val itemStart : int -> int
val itemEnd : int -> int

val clearParser : unit -> unit
For internal use 1in generated parsers:

type parseTables =

actions (unit -> obj) vector *
transl int vector *
lhs string *

len string *
defred string *
dgoto string *
sindex string *
rindex string *
gindex string *
tablesize int *
table string *
check string

exception yyexit of obj
exception ParseError of (obj —> bool)

val yyparse : parseTables -> int -> (lexbuf -> ’'a) -> lexbuf -> 'Db
val peekVal : int -> 'a

end

These functions are for use in mosmlyac-generated parsers. For
further information, see the Moscow ML Owner’s Manual. For
examples, see mosml/examples/lexyacc and mosml/examples/calc.

A grammar definition (input to mosmlyac) consists of fragments of
this form

nonterm :
grsymsl { actionl }
| grsyms2 { action2 }
| grsyms3 { action3 }

where the grsyms are sequences of grammar symbols, matching some
string of characters, and the actions are corresponding semantic
actions, written in ML. The following functions can be used in the
semantic actions:

[symbolStart ()] returns the start position of the string that
matches the sequence of grammar symbols. The first character in
the input stream has position 0. May be called in a semantic
action only.

PARSING

[symbolEnd ()] returns the end position, plus one, of the string
that matches the sequence of grammar symbols. The first character
in the input stream has position 0. May be called in a semantic
action only.

[itemStart 1] returns the start position of the string that matches
the i’th grammar symbol in the sequence. The first grammar symbol
has number 1. The first character in the input stream has position
0. May be called in a semantic action only.

[itemEnd 1] returns the end position, plus one, of the string that
matches the i’th grammar symbol in the sequence. The first grammar
symbols has number 1. The first character in the input stream has
position 0. May be called in a semantic action only.

[clearParser ()] clears the parser stack. It may be called after a
parsing function has returned, to remove all pointers from the
parser stack to structures that were built by semantic actions
during parsing. This is not strict necessary, but reduces the
memory requirements of the program.

113

114 PATH

Module Path

OS.Path -- SML Basis Library

exception Path

val parentArc ¢ string

val currentArc : string

val fromString : string -> {isAbs : bool, vol : string, arcs : string list}
val toString : {isAbs : bool, vol : string, arcs : string list} -> string
val getVolume : string -> string

val validvolume : {isAbs : bool, vol : string} -> bool

val getParent : string -> string

val isAbsolute : string -> bool

val isRelative : string -> bool

val isRoot : string -> bool

val mkAbsolute : { path : string, relativeTo : string } -> string

val mkRelative : { path : string, relativeTo : string } -> string

val concat : string * string -> string

val mkCanonical : string -> string

val isCanonical : string -> bool

val splitDirFile : string -> {dir : string, file : string}

val joinDirFile : {dir : string, file : string} -> string
val dir : string -> string
val file : string -> string

val splitBaseExt : string -> {base : string, ext : string option}

val joinBaseExt : {base : string, ext: string option} -> string
val base : string -> string
val ext : string -> string option

exception InvalidArc
val fromUnixPath : string -> string
val toUnixPath : string -> string

This module provides OS-independent functions for manipulating
strings that represent file names and paths in a directory
structure. ©None of these functions accesses the actual filesystem.

Definitions:

* An arc denotes a directory or file. Under Unix or DOS, an arc may
have form "..", ".", "', or "abc", or similar.

* An absolute path has a root: Unix examples include "/", "/a/b";
DOS examples include "\", "\a\b", "A:\a\b".

* A relative path is one without a root: Unix examples include
"..", "a/b"; DOS examples include "..", "a\b", "A:a\b".

* A path has an associated volume. Under Unix, there is only one
volume, whose name is "". Under DOS, the volume names are "",
"A:", "C:", and similar.

PATH

* A canonical path contains no occurrences of the empty arc "" or

the current arc ".", and contains or the parent arc ".." only at
the beginning and only if the path is relative.

* All functions (except concat) preserve canonical paths. That is,
if all arguments are canonical, then so will the result be.

* All functions are defined so that they work sensibly on canonical
paths.

* There are three groups of functions, corresponding to three ways
to look at paths, exemplified by the following paths:

Unix: d/e/f/a.b.c and /d/e/f/a.b.c
DOS: A:d\e\f\a.b.c and A:\d\e\f\a.b.c

(1) A path consists of a sequence of arcs, possibly preceded by a
volume and a root:

vol [--- arcs ——-] vol root [--- arcs ——-]
Unix examples: d e f a.b.c / d e f
DOS examples: A: d e f a.b A: \ d e £
(2) A path consists of a directory part and a (last) file name part:
directory file directory file
Unix examples: d/e/f a.b.c /d/e/f a.b.c
DOS examples: A:d\e\f a.b A:\d\e\f a.b
(3) A path consists of a base and an extension:
base extension base extension
Unix examples: d/e/f/a.b c /d/e/f/a.b c
DOS examples: A:d\e\f\a b A:\d\e\f\a b

GROUP 0: General functions on paths:

[parentArc] is the arc denoting a parent directory: ".." under
DOS and Unix.

[currentArc] is the arc denoting the current directory: "." under
DOS and Unix.

[isRelative p] returns true if p is a relative path.

[isAbsolute p] returns true if p is an absolute path.
Equals not (isRelative p).

[isRoot p] returns true if p is a canonical specification of a root
directory. That is, if p is an absolute path with no arcs.

[validVolume {isAbs, vol}] returns true if vol is a valid volume
name for an absolute path (if isAbs=true) resp. for a relative path
(if isAbs=false). Under Unix, the only valid volume name is "";
under MS DOS and MS Windows the valid volume names are "", "a:",
"b:", ..., and "A:", "B:",

115

116 PATH

[getParent p] returns a string denoting the parent directory of p.
It holds that getParent p = p if and only if p is a root.

[concat (pl, p2)] returns the path consisting of pl followed by p2.
Does not preserve canonical paths: concat ("a/b", "../c") equals
"a/b/../c". This is because "a/b/../c" and "a/c" may not be
equivalent in the presence of symbolic links. Raises Path if p2 is
not a relative path.

[mkAbsolute { path=pl, relativeTo=p2 }] returns the absolute path
made by taking path p2, then pl. That is, returns pl if pl is
absolute; otherwise returns the canonicalized concatenation of p2
and pl. Raises Path if p2 is not absolute (even if pl is
absolute) .

[mkRelative { path=pl, relativeTo=p2 }] returns pl relative to p2.
That is, returns pl if pl is already relative; otherwise returns
the relative path leading from p2 to pl. Raises Path if p2 is not
absolute (and even if pl is relative), or if pl and p2 are both
absolute but have different roots.

[mkCanonical p] returns a canonical path which is equivalent to p.
Redundant occurrences of the parent arc, the current arc, and the

empty arc are removed. The canonical path will never be the empty
string; the empty path is converted to the current directory path

("." under Unix and DOS).

[isCanonical p] is equal to (p = mkCanonical p).

GROUP 1: Manipulating volumes and arcs:

[fromString p] returns {isAbs=false, vol, arcs} if the path p is
relative, and {isAbs=true, vol, arcs} if the path p is absolute.

In both cases vol is the volume name and arcs is the list of
(possibly empty) arcs of the path. Under Unix, the volume name is
always the empty string ""; under DOS it will have form "A:", "C:",
or similar.

[toString path] reconstitutes a path from its root (if any) and
arcs. Raises Path if applied to a relative path whose first arc is
empty. It holds that toString(fromString p) = p, except that in MS
DOS, slashes "/" in p will be replaced by backslashes "\". It
holds that fromString (toString p) = p when no exception is raised.
It holds that isRelative(toString {isAbs=false, vol, arcs}) = true
when no exception is raised.

[getVolume p] returns the volume name of the path p, if given.
Under Unix and MacOS, this is always the empty string "", and under
MS DOS and MS Windows, it may have form "A:", "B:", ..

GROUP 2: Manipulating directory paths and file names:
[splitDirFile p] returns {dir, file} where file is the last arc in
p, and dir is the path preceding that arc. A typical use is to

split a path into the directory part (dir) and the filename (file).

[joinDirFile {dir, file}] returns the path p obtained by extending
the path dir with the arc file.

PATH 117

[dir p] equals #dir (splitDirFile p).

[file p] equals #file (splitDirFile p).

GROUP 3: Manipulating file names and extensions:

[splitBaseExt s] returns {base, ext} where ext = NONE if s has no
extension, and ext = SOME e if s has extension e; base is the part
of s preceding the extension. A path s is considered having no
extension if its last arc contains no extension separator
(typically ".") or contains an extension separator only as its
leftmost character, or contains an extension separator as its
right-most character. Hence none of "a.b/cd", "a/.login", "a.",
"..", "." and "." has an extension.

[joinBaseExt {base, ext}] returns an arc composed of the base name
and the extension (if different from NONE). It is a left inverse
of splitBasekExt, so joinBaseExt (splitBaseExt s) = s, but the
opposite does not hold (since the extension may be empty, or may
contain extension separators).

[ext s] equals #ext (splitBaseExt s).

[base s] equals #base (splitBaseExt s).

GROUP 4: Convenience functions for manipulating Unix-style paths.

[fromUnixPath s] returns a path in the style of the host 0S from
the Unix-style path s. Slash characters are translated to the
directory separators of the local system, as are parent arcs and
current arcs. Raises InvalidArc if any arc in s is invalid in the
host 0S’s path syntax.

[toUnixPath s] returns a Unix-style path from the path s in the
style of the host 0S. If the path s has a non-empty volume name,
then the Path exception is raised. Raises InvalidArc if any arc
contains a slash character.

118 POLYGDBM

Module Polygdbm

Polygdbm -- GNU gdbm persistent polymorphic hashtables -- requires Dynlib
type (’'key, ’'data) table

exception NotFound

exception AlreadyThere
exception NotWriter

exception Closed

exception GdbmError of string

val withtable : string * Gdbm.openmode -> ((’key, ’'data) table -> ’a) -> 'a
val add : ("key, ’data) table -> 'key * ’data -> unit

val insert ("key, ’'data) table -> ’'key * ’'data -> unit

val find ("key, ’'data) table -> 'key -> ’data

val peek ("key, ’'data) table -> 'key -> ’'data option

val hasKey ("key, ’'data) table —> "key -> bool

val remove : ("key, ’'data) table -> ’"key -> unit

val listKeys ("key, ’'data) table -> ’key list

val numItems ("key, ’'data) table -> int

val listItems ("key, ’'data) table -> ('key * ’data) list

val app ("key * 'data -> unit) -> ('key, ’'data) table -> unit

val map : ("key * 'data -> 'a) -> (’'key, ’'data) table -> ’a list

val fold : ("key * 'data * 'a —> 'a) -> "a -> ('key, ’'data) table > 'a
val fastwrite : bool ref

val reorganize : ('key, ’data) table -> unit

[("key, 'data) table] is the type of an opened table with keys of
type ’'key and associated values of type 'data. The actual values
of type 'key and ’data cannot contain function closures or abstract
values. Values involving references (even circular values) can be
stored, but the identity of references is preserved only with every
single key or value stored, not across several different values.

The Polygdbm table files of are not portable across platforms,
because word size and endianness affects the lay-out of values.

A value of type table can be used only in the argument f to the
withtable function. This makes sure that the table is closed after
use.

[withtable (nam, mod) f] first opens the table db in file nam with
mode mod, then applies f to db, then closes db. Makes sure to
close db even if an exception is raised during the evaluation of
f(db). Raises GdbmError with an informative message in case the
table cannot be opened. E.g. the table cannot be opened for
reading if already opened for writing, and cannot be opened for
writing if already opened for reading.

[add db (k,v)] adds the pair (k, v) to db. Raises AlreadyThere if
there is a pair (k, _) in db already. Raises NotWriter if db is
not opened in write mode.

[insert db (k, v)] adds the pair (k, v) to db, replacing any pair
(k, _) at k if present. Raises NotWriter if db is not opened in
write mode.

[find(db, k)] returns v if the pair (k, v) is in db; otherwise
raises NotFound.

POLYGDBM 119

[peek db k] returns SOME v if the pair (k, v) is in db; otherwise
returns NONE.

[hasKey (db, k)] returns true if there is a pair (k, _) in db;
otherwise returns false.

[remove db k] deletes the pair (k, _) from the table if present;
otherwise raises NotFound. Raises NotWriter if db is not opened in
write mode.

[listKeys db] returns a list of all keys in db in an unspecified
order.

[numItems db] is the number of (key, value) pairs in db.
Equivalent to length(listKeys db).

[listItems db] returns a list of all (key, value) pairs in db in some
order. Equivalent to
List.map (fn key => (key, find(db,key))) (listKeys db)

l[app f db] is equivalent to List.app f (listItems db), provided the
function f does not change the set of keys in the table.
Otherwise the effect is unpredictable.

[map £ db] is equivalent to List.map f (listItems db), provided the
function f does not change the set of keys in the table.
Otherwise the result and effect are unpredictable.

[fold £ a db] is equivalent to

List.foldr (fn ((k, v), r) => f(k, v, r)) a (listItems db)
provided the function f does not change the set of keys in the
table. Otherwise the result and effect are unpredictable.

[fastwrite] can be set to speed up writes to a table. By default,
!fastwrite is false and every write to a table will be followed by
file system synchronization. This is safe, but slow if you perform
thousands of writes. However, if !fastwrite is true when calling
withtable, then writes may not be followed by synchronization,
which may speed up writes considerably. In any case, the file
system is synchronized before withtable returns.

[reorganize db] has no visible effect, but may be called after a
lot of deletions to shrink the size of the table file.

120 POLYHASH

Module Polyhash

Polyhash -- polymorphic hashtables as in the SML/NJ Library

type (’'key, ’"data) hash_table

val mkTable : ("_key -> int) * (/_key * ’_key -> bool) -> int * exn
-> ('_key, '_data) hash_table

val numItems : ("key, ’'data) hash_table -> int

val insert : ('_key, '_data) hash_table -> ’'_key * ’_data -> unit

val peekInsert : (’_key, '_data) hash_table -> ’_key * '_data

-> '_data option

val find ("key, ’'data) hash_table -> 'key -> 'data

val peek ("key, ’'data) hash_table -> 'key -> 'data option

val remove : ("key, 'data) hash_table -> 'key -> ’data

val listItems ("key, ’'data) hash_table -> ('key * ’'data) list

val apply ("key * 'data -> unit) -> ('key, ’'data) hash_table -> unit
(I

val map _key * 'data -> '_res) -> (’_key, ’data) hash_table
-> ('_key, '_res) hash_table
val filter : ("key * 'data -> bool) -> ('key, ’'data) hash_table -> unit
val transform : ("data -> ’_res) -> (’_key, ’'data) hash_table
-> ('_key, '_res) hash_table
val copy ¢ ('_key, '_data) hash_table -> (’_key, '_data) hash_table

val bucketSizes : (’'key, ’data) hash_table -> int list
Polymorphic hash primitives from Caml Light
val hash : 'key -> int

val hash_param : int -> int -> ’'key -> int
val mkPolyTable : int * exn -> (”_key, '_data) hash_table

[("key, '"data) hash_table] is the type of hashtables with keys of type
"key and data values of type ’'data.

[mkTable (hashVal, sameKey) (sz, exc)] returns a new hashtable,

using hash function hashVal and equality predicate sameKey. The sz

is a size hint, and exc is the exception raised by function find.

It must be the case that sameKey(kl, k2) implies hashVal (kl) =

hashVal (k2) for all k1,k2.

[numItems htbl] is the number of items in the hash table.

[insert htbl (k, d)] inserts data d for key k. If k already had an
item associated with it, then the old item is overwritten.

[find htbl k] returns d, where d is the data item associated with key k,
or raises the exception (given at creation of htbl) if there is no such d.

[peek htbl k] returns SOME d, where d is the data item associated with
key k, or NONE if there is no such d.

[peekInsert htbl (k, d)] inserts data d for key k, if k is not
already in the table, returning NONE. If k is already in the
table, and the associated data value is d’, then returns SOME d’
and leaves the table unmodified.

[remove htbl k] returns d, where d is the data item associated with key k,
removing d from the table; or raises the exception if there is no such d.

[listItems htbl] returns a list of the (key, data) pairs in the hashtable.

POLYHASH 121

[apply f htbl] applies function f to all (key, data) pairs in the
hashtable, in some order.

[map f htbl] returns a new hashtable, whose data items have been
obtained by applying f to the (key, data) pairs in htbl. The new
tables have the same keys, hash function, equality predicate, and
exception, as htbl.

[filter p htbl] deletes from htbl all data items which do not
satisfy predicate p.

[transform f htbl] as map, but only the (old) data values are used
when computing the new data values.

[copy htbl] returns a complete copy of htbl.

[bucketSizes htbl] returns a list of the sizes of the buckets.
This is to allow users to gauge the quality of their hashing
function.

[hash k] returns the hash value of k, as a positive integer. If
k1=k2 then hash(kl) = hash(k2), so this function can be used when
creating hashtables. The application hash (k) always terminates,
even on cyclic structures. (From the Caml Light implementation).

[hash_param n m k] computes a hash value for k with the same
properties as for hash. The parameters n and m give more precise
control over hashing. Hashing performs a depth-first,
right-to-left traversal of the structure k, stopping after n
meaningful nodes were encountered, or m nodes, meaningful or not,
were encountered. Meaningful nodes are: integers, floating-point
numbers, strings, characters, booleans, references, and constant
constructors.

[mkPolyTable (sz, exc)] creates a new hashtable using the
polymorphic hash function (hash) and ML equality (op =); the integer
sz 1s a size hint and the exception exc is to be raised by find.

122 POSTGRES
Module Postgres
Postgres -- interface to PostgreSQL database server -- requires Dynlib

type dbconn
type dbresult
eqtype oid

exception Closed
exception Null

Opening,

val

val
val
val
val
val
val

val
val
val

closing,

openbase : { dbhost
dbname
dboptions
dbport
dbpwd
dbtty
dbuser
} => dbconn

closebase
db

host
options
port

tty

status
reset
errormessage

: dbconn ->
: dbconn ->
: dbconn ->
: dbconn ->
: dbconn ->
: dbconn ->
: dbconn ->
: dbconn ->
: dbconn ->

Connection to server
Result of a query
Internal object 1id

Connection is closed
Field value is NULL

and maintaining database connections

string option, database server host
string option, database name

string option, options

string option, database server port
string option, user passwd

string option, tty for error log
string option database user

unit

string

string option
string

string

string

bool
unit
string option

Query execution and result set information

datatype dbresultstatus =

val
val
val
val
val
val
val
val

Bad_response
Command_ok
Copy_in
Copy_out
Empty_query
Fatal_error
Nonfatal_error
Tuples_ok

execute
resultstatus
ntuples
cmdtuples
nfields
fname

fnames
fnumber

: dbconn ->
: dbresult
: dbresult
: dbresult
: dbresult
: dbresult
: dbresult
: dbresult

Accessing the fields of

val
val
val
val

getint
getreal
getstring
getdate

: dbresult
: dbresult
: dbresult
: dbresult

An unexpected response was received
The query was a command

The query was "copy <table> from ..."
The query was "copy <table> to ..."

The query successfully returned tuples

string -> dbresult
-> dbresultstatus
-> int
-> int
-> int

-> int -> string
-> string vector
-> string -> int option

a resultset

-> int -> int -> int

-> int -> int -> real

-> int -> int -> string

-> int -> int -> int * int * int Y M D

POSTGRES

: dbresult -> int -> int -> int * int * int HMS
: dbresult -> int -> int -> Date.date

: dbresult -> int -> int -> bool

: dbresult -> int -> int -> bool

val gettime

val getdatetime
val getbool

val isnull

datatype dynval =

Bool of bool psqgl bool
| Int of int psgl int4
| Real of real psqgl float8, float4
| String of string psqgl text, varchar
| Date of int * int * int psqgl date yyyy-mm-dd
| Time of int * int * int psqgl time hh:mm:ss
| DateTime of Date.date psqgl datetime
| 0id of oid psgl oid
| Bytea of Word8Array.array psqgl bytea
| Nullval psqgl NULL

val getdynfield :

val
val

getdyntup
getdyntups

dbresult -> int -> int -> dynval

: dbresult -> int -> dynval vector
: dbresult -> dynval vector vector

val dynvalZ2s : dynval -> string
Bulk copying to or from a table

val copytableto : dbconn * string * (string -> unit) -> unit
val copytablefrom : dbconn * string * ((string -> unit) -> unit) -> unit

Some standard ML and Postgres types:

datatype dyntype =

BoolTy ML bool psqgl bool
| IntTy ML int psgl int4
| RealTly ML real psqgl float8, float4
| StringTy ML string psqgl text, varchar
| DateTy ML (yyyy, mth, day) psqgl date
| TimeTy ML (hh, mm, ss) psgl time
| DateTimeTy ML Date.date psgl datetime, abstime
| 0idTy ML oid psgl oid
| ByteArrTy ML Word8Array.array psql bytea
\

UnknownTy of oid
val fromtag : dyntype -> string
val ftype : dbresult -> int -> dyntype
val ftypes : dbresult -> dyntype Vector.vector
val applyto : "a -=> ('a -> 'b) > 'b
Formatting the result of a database query as an HTML table

val formattable : dbresult -> Msp.wseq
val showquery : dbconn -> string -> Msp.wseq

123

(Technical warning: This expects the PostgreSQL server to use ISO
date format, such as 2002-07-25. Also, if the PostgreSQL server
was compiled with support for multibyte-encodings (Unicode), the
database must be created with

createdb -E LATIN1 <dbname>

124 POSTGRES

or you should set the environment variable PGCLIENTENCODING to
LATINl in the SML program’s environment.)

[dbconn] is the type of connections to a PostgreSQL database.
[dboresult] is the type of result sets from SQL queries.

[oid] is the type of PostgreSQL internal object identifiers.
[openbase { dbhost, dbport, dboptions, dbtty, dbname, dbuser, dbpwd }]
opens a connection to a PostgreSQL database server on the given
host (default the local one) on the given port (default 5432), with
the given options (default the empty string), with error logging on
the given tty (default?), to the given database (defaults to the
user’s login name), for the given user name (defaults to the
current user’s login name), and the given password (default none).
The result is a connection which may be used in subsequent queries.

[closebase dbconn] closes the database connection. No further
queries can be executed.

[db dbconn] returns the name of the database.

[host dbconn] returns SOME h, where h is the database server host
name, if the connection uses the Internet; returns NONE if the
connection is to a socket on the local server.

[options dbconn] returns the options given when opening the database.
[port dbconn] returns the port number of the connection.

[tty dbconn] returns the name of the tty used for logging.

[status dbconn] returns true if the connection is usable, false
otherwise.

[reset dbconn] attempts to close and then reopen the connection to
the database server.

[errormessage dbconn] returns NONE if no error occurred, and SOME msg
if an error occurred, where msg describes the error.

[execute dbconn query] sends an SQL query to the database server
for execution, and returns a resultset dbres.

[resultstatus dbres] returns the status of the result set dbres.
After a select query that succeeded, it will be Tuples_ok.

[ntuples dbres] returns the number of tuples in the result set
after a query.

[cmdtuples dbres] returns the number of tuples affected by an
insert, update, or delete SQL command.

[nfields dbres] returns the number of fields in each tuple after a
query.

[fname dbres fno] returns the name of field number fno (in the
result set after a query). The fields are numbered 0, 1,...

[fnames dbres] returns a vector of the field names (in the result

POSTGRES 125

set after a query).

[fnumber dbres fname] returns SOME i where i is the number (0, 1,
.) of the field called fname (in the result set after a query),
if the result set contains such a field name; returns NONE otherwise.

[ftype dbres fno] returns the dyntype of field number fno (in the
result set after a query).

[ftypes dbres] returns a vector of the dyntypes (in the result set
after a query).

[fromtag dt] returns the name of the preferred PostgreSQL type used
to represent values of the dyntype dt. This may be used when
building ‘create table’ statements.

[getint dbres fno tupno] returns the integer value of field number
fno in tuple tupno of result set dbres. Raises Null if the value
is NULL.

[getreal dbres fno tupno] returns the floating-point value of field
number fno in tuple tupno of result set dbres. Raises Null if the
value is NULL.

[getstring dbres fno tupno] returns the string value of field
number fno in tuple tupno of result set dbres. Raises Null if the
value is NULL.

[getdate dbres fno tupno] returns the date (yyyy, mth, day) value
of field number fno in tuple tupno of result set dbres. Raises
Null if the value is NULL. Raises Fail if the field cannot be
scanned as a date.

[gettime dbres fno tupno] returns the time-of-day (hh, mm, ss)
value of field number fno in tuple tupno of result set dbres.
Raises Null if the value is NULL. Raises Fail if the field cannot
be scanned as a time.

[getdatetime dbres fno tupno] returns the Date.date value of field
number fno in tuple tupno of result set dbres. Raises Null if the
value is NULL. Raises Fail if the field cannot be scanned as a
date.

[getbool dbres fno tupno] returns the boolean value of field number
fno in tuple tupno of result set dbres. Raises Null if the value
is NULL.

[isnull dbres fno tupno] returns true if the value of field number
fno in tuple tupno of result set dbres is NULL; false otherwise.

[getdynfield dbres fno tupno] returns the value of field number fno
in tuple tupno of result set dbres as a dynval (a wrapped value).
A NULL value is returned as NullVal. Note that the partial
application (getdynfield dbres fno) precomputes the type of the
field fno. Hence it is far more efficient to compute

let val getfno = getdynfield dbres fno

in tabulate(ntuples dbres, getfno) end
than to compute

let fun getfno tupno = getdynfield dbres fno tupno

in tabulate(ntuples dbres, getfno) end
because the latter repeatedly computes the type of the field.

126 POSTGRES

[getdyntup dbres tupno] returns the fields of tuple tupno in result
set dbres as a vector of dynvals.

[getdyntups dbres] returns all tuples of result set dbres as a
vector of vectors of dynvals.

[dynval2s dv] returns a string representing the dynval dv.

[applyto x f] computes f(x). This is convenient for applying
several functions (given in a list or vector) to the same value:
map (applyto 5) (tabulate(3, getdynfield dbres))
equals
[getdynfield dbres 0 5, getdynfield dbres 1 5, getdynfield dbres 2 5]

[copytableto (dbconn, tablename, put)] executes a "COPY TABLE TO"
statement, applies the function put to every tuple of the table,
represented as a line of text (not terminated by newline \n), and
cleans up at the end. For instance, to copy the contents of a
table t to a text stream s (one tuple on each line), define

fun put line =

(TextIO.output (s, line); TextIO.output (s, "\n"))

and execute

copytableto (dbconn, "t", put).

[copytablefrom(dbconn, tablename, useput)] executes a "COPY TABLE
FROM" statement, creates a put function for copying lines to the
table, passes the put function to useput, and cleans up at the end.
The put function may be called multiple times for each line
(tuple); the end of each line is indicated with the newline
character "\n" as usual. For instance, to copy the contents of a
text stream s to a table t, define

fun useput put =

while not (TextIO.endOfStream s) do put (TextIO.inputLine s);

and execute

copytablefrom(dbconn, "t", useput).
Note that TextIO.inputLine preserves the newline at the end of each
line.

[formattable dbresult] returns a wseq representing an HTML table.
The HTML table has a column for every field in the dbresult. The
first row is a table header giving the names of the fields in the
dbresult. The remaining rows correspond to the tuples in the
dbresult, in the order they are provided by the database server.
Null fields are shown as NULL.

[showquery dbconn query] sends the SQL query to the database
server, then uses formattable to format the result of the query.

PROCESS

Module Process

OS.Process -- SML Basis Library
type status

val success . status

val failure : status

val isSuccess : status -> bool

val system : string —> status

val atExit ¢ (unit -> unit) -> unit
val exit : status -> 'a

val terminate : status -> 'a

val sleep : Time.time -> unit

val getEnv : string -> string option

127

Portable functions for manipulating processes.

[success] 1s the unique status value that signifies successful
termination of a process. Note: MS DOS (sometimes) believes that
all processes are successful.

[failure] is a status value that signifies an error during
execution of a process. Note that in contrast to the success
value, there may be several distinct failure values. Use function
isSuccess to reliably test for success.

[isSuccess sv] returns true if the status value sv represents a
successful execution, false otherwise. It holds that
isSuccess success = true and isSuccess failure = false.

[system cmd] asks the operating system to execute command cmd, and
returns a status value.

[atExit act] registers the action act to be executed when the
current SML program calls Process.exit. Actions will be executed
in reverse order of registration.

[exit 1] executes all registered actions, then terminates the SML
process with completion code 1i.

[terminate i] terminates the SML process with completion code i
(but without executing the registered actions).

[sleep t] suspends this process for approximately the time
indicated by t. The actual time slept depends on the capabilities
of the underlying system and the system load. Does not sleep at
all if t <= Time.zeroTime.

[getEnv evar] returns SOME s if the environment variable evar is
defined and is associated with the string s; otherwise NONE.

128

RANDOM

Module Random

Random -- random number generator

type generator

val newgenseed : real -> generator

val newgen : unit -> generator

val random : generator -> real

val randomlist : int * generator -> real list

val range : int * int -> generator -> int

val rangelist : int * int -> int * generator -> int list

[generator] is the type of random number generators, here the
linear congruential generators from Paulson 1991, 1996.

[newgenseed seed] returns a random number generator with the given
seed. Throws exception Fail on seed 0.0 (which would give rise to
a degenerate sequence of random numbers).

[newgen ()] returns a random number generator, taking the seed from
the system clock.

[random gen] returns a random number in the interval [0..1).

[randomlist (n, gen)] returns a list of n random numbers in the
interval [0,1).

[range (min, max) gen] returns an integral random number in the
range [min, max). Raises Fail if min >= max.

[rangelist (min, max) (n, gen)] returns a list of n integral random
numbers in the range [min, max). Raises Fail if min >= max.

RBSET 129

Module Rbset

Rbset -- ordered sets implemented by red-black trees
Intention: should resemble SML/NJs ORD_SET signature

signature Rbset = sig
type 'item set

exception NotFound
exception NonMonotonic

val empty ¢ ("item * 'item -> order) -> ’item set
val singleton ¢ ("item * 'item -> order) -> ’item -> ’item set
val add : 'item set * ’item -> ’item set

val add’ : item * 'item set -> ’item set

val addList : 'item set * 'item list -> 'item set
val isEmpty ¢ 'item set —> bool

val isSubset : 'item set * 'item set -> bool

val member : 'item set * ’item -> bool

val delete : item set * ’item -> ’item set

val numItems : 'item set -> int

val getOrder ¢ 'item set -> (’item * 'item -> order)
val union : 'item set * 'item set -> ’item set
val intersection : 'item set * ’item set -> 'item set
val difference : 'item set * 'item set -> ’item set
val listItems : 'item set -> ’item list

val app ¢ ("item -> unit) -> ’item set -> unit

val revapp item -> unit) -> 'item set -> unit

(I

val foldr ("item * 'b -> 'b) -> 'b -> 'item set -> 'Db

val foldl ("item * 'b -> 'b) -> 'b -> 'item set -> 'Db

val map ("item -> 'newitem) * ('newitem * ’'newitem -> order)
-> "item set -> ’'newitem set

val mapMono ¢ ("item -> 'newitem) * ('newitem * ’'newitem -> order)
-> "item set -> ’'newitem set

val find : ("item -> bool) -> 'item set -> 'item option

val min : 'item set -> 'item option

val max : 'item set -> 'item option

val hash : ("item -> word) -> 'item set -> word

val equal : 'item set * 'item set -> bool

val compare : 'item set * 'item set -> order

val depth : 'item set -> int

datatype ’item intv =
All
| From of "item
| To of "item
| FromTo of ’'item * ’item

val subset : 'item set * ’item intv -> ‘item set
val sublist : 'item set * 'item intv -> ’'item list

end

["item set] is the type of sets of ordered elements of type ’item.
The ordering relation on the elements is used in the representation
of the set. The result of combining or comparing two sets with
different underlying ordering relations is undefined. The
implementation uses Okasaki-style red-black trees.

130 RBSET

[empty ordr] creates a new empty set with the given ordering
relation.

[singleton ordr i] creates the singleton set containing i, with the
given ordering relation.

[add(s, 1)] adds item i to set s.

[addList (s, xs)] adds all items from the list xs to the set s.
[isEmpty s] returns true if and only if the set is empty.

[equal(sl, s2)] returns true if and only if the two sets have the
same elements, as determined by the ordering relation given when
the sets were created.

[isSubset (sl, s2)] returns true if and only if sl is a subset of s2.
[member (s, 1)] returns true if and only if i is in s.

[delete(s, 1)] removes item 1 from s. Raises NotFound if i is not in s.
[numItems s] returns the number of items in set s.

[union(sl, s2)] returns the union of sl and s2.

[intersection(sl, s2)] returns the intersection of sl and s2.

[difference(sl, s2)] returns the difference between sl and s2 (that
is, the set of elements in sl but not in s2).

[listItems s] returns a list of the items in set s, in increasing
order.

[app f s] applies function f to the elements of s, in increasing
order.

[revapp f s] applies function f to the elements of s, in decreasing
order.

[foldl f e s] applies the folding function f to the entries of the
set in increasing order.

[foldr £ e s] applies the folding function f to the entries of the
set in decreasing order.

[map (f, ordr) s] creates a new set with underlying ordering ordr
by applying function f to all elements of the set s.

[mapMono (f, ordr) s] creates a new set by applying the strictly
monotonically increasing function f to all elements of s. The new
set will have ordering ordr. This is faster than map (f, ordr) s by
a logarithmic factor, but the function must satisfy

ordr (f x, £ y) = ordr’ (x, y)
for all elements x, y in s, where ordr’ is the ordering relation
on s; otherwise exception NonMonotonic is thrown.

[find p s] returns SOME i, where i is an item in s which satisfies
p, if one exists; otherwise returns NONE. Traverses the entries of
the set in increasing order.

RBSET 131

[min s] returns SOME i, where i is the least item in the set s, if s is
non-empty; returns NONE if s is empty.

[max s] returns SOME i, where i is the greatest item in the set s,
if s is non-empty; returns NONE if s is empty.

[hashCode h s] returns the hashcode of the set, which is the sum of
the hashcodes of its elements, as computed by the function h.

[compare (sl, s2)] returns LESS, EQUAL or GREATER according as sl
precedes, equals or follows s2 in the lexicographic ordering that
would be obtained by comparing the sorted lists of elements of the
two sets. It holds that

equal (sl, s2) if and only if compare(sl, s2) = EQUAL

isSubset (sl, s2) implies compare(sl, s2) = LESS

isSubset (s2, sl) implies compare(sl, s2) = GREATER

[subset (s, intv)] returns a set of those elements of s that belong
to the interval intv. The intervals have the following meaning:

All denotes all elements

From el denotes elements e for which cmp(el, e) <> GREATER

To e2 denotes elements e for which cmp(e, e2) = LESS

FromTo(el, e2) denotes elements e for which cmp(el, e) <> GREATER
and cmp (e, e2) = LESS

[sublist (s, intv)] returns a list, in order, of those elements of s
that belong to the interval intv. Thus sublist (s, All) is equivalent
to listItems s.

132 REAL

Module Real

Real -- SML Basis Library
type real = real

exception Div
and Overflow

val ~ real -> real
val + real * real -> real
val - real * real -> real
val * real * real -> real
val / : real * real -> real
val abs : real -> real
val min : real * real -> real
val max : real * real -> real
val sign : real -> int
val compare : real * real -> order
val sameSign : real * real -> bool
val toDefault . real -> real
val fromDefault : real -> real
val fromInt : int -> real
val floor : real -> int
val ceil : real —> int
val trunc : real -> int
val round : real -> int
val > : real * real -> bool
val >= : real * real -> bool
val < real * real -> bool
val <= real * real -> bool
val == real * real -> bool
val != : real * real -> bool
val ?= : real * real -> bool
val toString : real -> string
val fromString : string -> real option
val scan : (char, ’"a) StringCvt.reader -> (real, 'a) StringCvt.reader
val fmt : StringCvt.realfmt -> real -> string

[~]

[*]

[/]

[+]

(-]

[>]

[>=]

[<]

[<=] are the usual operations on defined reals (excluding NaN and Inf).

l[abs %] is x 1f x >= 0, and ~x if x < 0, that is, the absolute value of x.
[min(x, y)] 1s the smaller of x and y.
[max (x, y)] is the larger of x and y.

[sign x] is ~1, 0, or 1, according as x is negative, zero, or positive.

REAL 133

[compare (%, y)] returns LESS, EQUAL, or GREATER, according
as x 1s less than, equal to, or greater than y.

[sameSign(x, y)] is true iff sign x = sign y.

[toDefault x] is x.

[fromDefault x] is x.

[fromInt i] is the floating-point number representing integer 1i.

[floor r] is the largest integer <= r (rounds towards minus infinity).
May raise Overflow.

[ceil r] 1is the smallest integer >= r (rounds towards plus infinity).
May raise Overflow.

[trunc r] is the numerically largest integer between r and zero
(rounds towards zero). May raise Overflow.

[round r] is the integer nearest to r, using the default rounding
mode. May raise Overflow.

[==(x, y)] 1s equivalent to x=y in Moscow ML (because of the
absence of NaNs and Infs).

[!'=(x, y)] 1is equivalent to x<>y in Moscow ML (because of the
absence of NaNs and Infs).

[?=(x, y)] 1s false in Moscow ML (because of the absence of NaNs
and Infs).

[fmt spec r] returns a string representing r, in the format
specified by spec (see below). The requested number of digits must
be >= 0 in the SCI and FIX formats and > 0 in the GEN format;
otherwise Size is raised, even in a partial application fmt (spec).

spec description C printf
SCI NONE scientific, 6 digits after point %e

SCI (SOME n) scientific, n digits after point %.ne
FIX NONE fixed-point, 6 digits after point st

FIX (SOME n) fixed-point, n digits after point %.nf
GEN NONE auto choice, 12 significant digits %$.12g
GEN (SOME n) auto choice, n significant digits %.ng

[toString r] returns a string representing r, with automatic choice
of format according to the magnitude of r.
Equivalent to (fmt (GEN NONE) r).

[fromString s] returns SOME(r) if a floating-point numeral can be
scanned from a prefix of string s, ignoring any initial whitespace;
returns NONE otherwise. The valid forms of floating-point numerals
are described by:
[+~=12(([0-9]+(\. [0-91+)2) | (\. [0-9]+)) ([eE] [+~=]12[0-9]+)?

[scan getc charsrc] attempts to scan a floating-point number from
the character source charsrc, using the accessor getc, and ignoring
any initial whitespace. If successful, it returns SOME(r, rest)
where r is the number scanned, and rest is the unused part of the

134 REAL

character source. The valid forms of floating-point numerals
are described by:
[+~=12(([0-9]+(\. [0-9]+)2) [(\.[0-9]+)) ([eE] [+~-]12[0-9]+)?

REDBLACKMAP

Module Redblackmap

Redblackmap -- applicative maps as Red-black trees

signature Redblackmap =
sig
type ('key, ’a) dict

exception NotFound

-> ('key, 'a) dict

"key * 'a -> ('key, 'a) dict

dict * "key -> ’a option
dict * ’"key -> ('key, 'a) dict * 'a

dict -> ('key * 'a) list

("key,"a) dict -> unit
("key,’a) dict -> unit
>'b -> ('key,’a) dict -> 'b
-> 'b -> ('key,’a) dict -> 'b

key,’a) dict -> (’'key, ’'b) dict

dict -> (’'key, ’'b) dict

val mkDict ("key * '"key -> order)
val insert ("key, ’'a) dict *

val find ("key, ’'a) dict * 'key -> 'a
val peek ("key, "a)

val remove ("key, "a)

val numItems ("key, ’'a) dict -> int
val listItems : (’'key, ’a)

val app ("key * "a -> unit) ->
val revapp ("key * 'a -> unit) —->
val foldr ("key * 'a * 'b -> 'b)-
val foldl ("key * 'a * 'b -> 'b)
val map : ("key * 'a > 'b) > ('
val transform : ("a -> ’'b) -> ('key,’a)
end

135

[("key, "a) dict] is the type of applicative maps from domain type

"key to range type 'a, or equivalently, applicative dictionaries

with keys of type ’'key and values of type ’a.

as Okasaki-style red-black trees.

[mkDict ordr] returns a new, empty map whose keys have ordering

ordr.

[insert (m, i, v)] extends (or modifies) map m to map i to v.

[find (m, k)] returns v if m maps k to v; otherwise raises NotFound.

[peek (m, k)] returns SOME v if m maps k to v; otherwise returns NONE.

[remove (m, k)] removes k from the domain of m and returns the

modified map and the element v corresponding to k.

if k is not in the domain of m.

[numItems m] returns the number of entries in m (that is, the size

of the domain of m).

[listItems m] returns a list of the
the corresponding values v in m, in

[app f m] applies function f to the
increasing order of k (according to
create the map or dictionary).

entries (k, v) of keys k and

order of increasing key values.

entries (k, v) in m, in
the ordering ordr used to

[revapp f m] applies function f to the entries (k, v) in m, in

decreasing order of k.

[foldl f e m] applies the folding function f to the entries (k, V)

in m, in increasing order of k.

[foldr £ e m] applies the folding function f to the entries (k, V)

in m, in decreasing order of k.

They are implemented

Raises NotFound

136 REDBLACKMAP

[map f m] returns a new map whose entries have form (k, f(k,v)),
where (k, v) is an entry in m.

[transform f m] returns a new map whose entries have form (k, f v),
where (k, v) is an entry in m.

REGEX 137

Module Regex

Regex -- regular expressions a la POSIX 1003.2 -- requires Dynlib
exception Regex of string

type regex A compiled regular expression

datatype cflag

Extended Compile POSIX extended REs
| Icase Compile case-insensitive match
| Newline Treat \n in target string as new line

datatype eflag

Notbol Do not match ~ at beginning of string
| Noteol Do not match $ at end of string
val regcomp : string -> cflag list -> regex
val regexec : regex -> eflag list -> string -> substring vector option
val regexecBool : regex -> eflag list -> string -> bool
val regnexec : regex -> eflag list -> substring

-> substring vector option
val regnexecBool : regex -> eflag list -> substring -> bool

val regmatch : { pat : string, tgt : string } -> cflag list
-> eflag list -> substring vector option

val regmatchBool : { pat : string, tgt : string } -> cflag list
-> eflag list —> bool

datatype replacer =

Str of string A literal string
| Sus of int The i’th parenthesized group
| Tr of (string -> string) * int Transformation of i’th group

| Trs of substring vector -> string Transformation of all groups

val replacel : regex -> replacer list -> string -> string

val replace : regex -> replacer list -> string -> string

val substitutel : regex -> (string -> string) -> string -> string

val substitute : regex -> (string -> string) -> string -> string

val tokens : regex —-> string -> substring list

val fields : regex —> string -> substring list

val map : regex —> (substring vector -> ’'a) -> string -> 'a list
val app : regex -> (substring vector -> unit) -> string -> unit
val fold 1 regex

-> (substring * 'a -> 'a) * (substring vector * 'a -> "a)
->'a -> string -> 'a

This structure provides pattern matching with POSIX 1003.2 regular
expressions.

The form and meaning of Extended and Basic reqgular expressions are
described below. Here R and S denote reqular expressions; m and n
denote natural numbers; L denotes a character list; and d denotes a
decimal digit:

138

REGEX

Extended Basic Meaning

c c Match the character c

. . Match any character

R* R* Match R zero or more times

R+ R\+ Match R one or more times

RIS R\ S Match R or S

R? R\? Match R or the empty string

R{m} R\ {m\} Match R exactly m times

R{m, } R\ {m, \} Match R at least m times

R{m,n} R\ {m, n\} Match R at least m and at most n times
(L] [L] Match any character in L

["L] ["L] Match any character not in L

~ ~ Match at string’s beginning

$ $ Match at string’s end

(R) \ (R\) Match R as a group; save the match
\d \d Match the same as previous group d
A\ \\ Match \ --- similarly for *.[]"$
\+ + Match + --- similarly for [?{}()

Some example character lists L:

aelou} Match vowel: a or e or i or o or u
9] Match digit: 0 or 1 or 2 or ... or 9

~0-91] Match non-digit

+*/A} Match - or + or * or / or *

-z] Match lowercase letter or hyphen (-)

Match uppercase letter
] Match hexadecimal digit; same as [0-9a-fA-F]
lower:]awd] Match lowercase Danish letters (ISO Latin 1)

O 9a-fA-F] Match hexadecimal digit

[:alnum:]] Match letter or digit

[:alpha:]] Match letter

[:cntrl:]] Match ASCII control character
[:digit:]] Match decimal digit; same as [0-9]
[:graph:]] Same as [:print:] but not [:space:]
[:1lower:]] Match lowercase letter

[:print:]] Match printable character
[:punct:]] Match punctuation character

[space:]] Match SML #u "’ #n\rn, #"\I’l", #"\t", #"\V", #"\fll
[: 11

[: 1]

[: &

Remember that backslash (\) must be escaped as "\\" in SML strings.

[regcomp pat cflags] returns a compiled representation of the
reqular expression pat. Raises Regex in case of failure.

[cflag] is the type of compilation flags with the following meanings:

[Extended] : compile as POSIX extended regular expression.
[Icase] : compile case-insensitive match.
[Newline] : make the newline character \n significant, so ” matches

just after newline (\n), and $ matches Jjust before \n.

Example: Match SML integer constant:
regcomp ""~?[0-9]+$" [Extended]

Example: Match SML alphanumeric identifier:
regcomp ""[a-zA-Z0-9] [a-zA-Z0-9'_]1*$" [Extended]

Example: Match SML floating-point constant
regcomp "M [+~12[0-91+ (\\.[0-9]1+| (\\.[0-9]+)?[eE] [+~]?[0-9]+)$" [Extended]

REGEX 139

Example: Match any HTML start tag; make the tag’s name into a group:
regcomp "<([[:alnum:]]+) [*>]*>" [Extended]

[regexec regex eflags s] returns SOME (vec) if some substring of s
matches regex, NONE otherwise. 1In case of success, vec is the
match vector, a vector of substrings such that vec[0] is the
(longest leftmost) substring of s matching regex, and vec[l],

vec[2], ... are substrings matching the parenthesized groups in pat
(numbered 1, 2, ... from left to right in the order of their
opening parentheses). For a group that does not take part in the

match, such as (ab) in "(ab) | (cd)" when matched against the string
"xcdy", the corresponding substring is the empty substring at the
beginning of the underlying string. For a group that takes part in
the match repeatedly, such as the group (b+) in "(a(bt))*" when
matched against "babbabbb", the corresponding substring is the last
(rightmost) one matched.

[eflag] is the type of end flags with the following meaning:

[Notbol] : do not match * at beginning of string.
[Noteol] : do not match $ at end of string.

[regexecBool regex eflags s] returns true if some substring of s
matches regex, false otherwise. Equivalent to, but faster than,
Option.isSome (regexec regexec eflags s).

[regnexec regex eflags sus] returns SOME (vec) if some substring of
sus matches regex, NONE otherwise. The substrings returned in the
vector vec will have the same base string as sus. Useful e.g. for
splitting a string into fragments separated by substrings matching
some regular expression.

[regnexecBool regex eflags sus] returns true if some substring of
sus matches regex, false otherwise. Equivalent to, but faster than,
Option.isSome (regnexec regexec eflags sus).

[regmatch { pat, tgt } cflags eflags] is equivalent to
regexec (regcomp pat cflags) eflags tgt
but more efficient when the compiled regex is used only once.

[regmatchBool { pat, tgt } cflags eflags] is equivalent to
regexecBool (regcomp pat cflags) eflags tgt
but more efficient when the compiled regex is used only once.

[replace regex repl s] finds the (disjoint) substrings of s
matching regex from left to right, and returns the string obtained
from s by applying the replacer list repl to every such substring
(see below). Raises Regex if it fails to make progress in
decomposing s, that is, if regex matches an empty string at the
head of s or immediately after a previous regex match.
Example use: delete all HIML tags from s:

replace (regcomp "<[">]+>" [Extended]) [] s

[replacel regex repl s] finds the leftmost substring bl of s
matching regex, and returns the string resulting from s by applying
the replacer list repl to the match vector vecl (see below).

Let x0 be a substring matching the entire regex and xi be the
substring matching the i’th parenthesized group in regex; thus xi =
vec[i] where vec is the match vector (see regexec above). Then a

140

REGEX

single replacer evaluates to a string as follows:

[Str s] gives the string s
[Sus 1i] gives the string xi
[Tr (f, 1)] gives the string f(xi)
[Trs f] gives the string f£(vec)

A replacer list repl evaluates to the concatenation of the results
of the replacers. The replacers are applied from left to right.

[substitute regex f s] finds the (disjoint) substrings bl, ..., bn
of s matching regex from left to right, and returns the string
obtained from s by replacing every bi by f(bi). Function f is

applied to the matching substrings from left to right. Raises
Regex if it fails to make progress in decomposing s. Equivalent to
replace regex [Tr (£, 0)] s

[substitutel regex f s] finds the leftmost substring b of s
matching regex, and returns the string obtained from s by replacing
that substring by f(b). Equivalent to

replacel regex [Tr (£, 0)] s

[map regex f s] finds the (disjoint) substrings of s matching regex
from left to right, applies f to the match vectors vecl, ..., vecn,
and returns the list [f(vecl), ..., f(vecn)]. Raises Regex if it
fails to make progress in decomposing s.

[app regex f s] finds the (disjoint) substrings of s matching regex
from left to right, and applies f to the match vectors vecl, ...,
vecn. Raises Regex if the regex fails to make progress in
decomposing s.

[fields regex s] returns the list of fields in s, from left to
right. A field is a (possibly empty) maximal substring of s not
containing any delimiter. A delimiter is a maximal substring that
matches regex. The eflags Notbol and Noteol are set. Raises Regex
if it fails to make progress in decomposing s.
Example use:

fields (regcomp " *; *" []) "56; 23 ; 22;; 89; 99"

[tokens regex s] returns the list of tokens in s, from left to
right. A token is a non-empty maximal substring of s not
containing any delimiter. A delimiter is a maximal substring that
matches regex. The eflags Notbol and Noteol are set. Raises Regex
if it fails to make progress in decomposing s. Equivalent to
List.filter (not o Substring.isEmpty) (fields regex s)

Two tokens may be separated by more than one delimiter, whereas two
fields are separated by exactly one delimiter. If the only delimiter
is the character #"|", then

"abc| |def" contains three fields: "abc" and "" and "def"

"abc| |def" contains two tokens: "abc" and "def"

[fold regex (fa, fb) e s] finds the (disjoint) substrings bl, ...,
bn of s matching regex from left to right, and splits s into the
substrings
a0, bl, al, b2, a2, ..., bn, an
where n >= 0 and where a0 is the (possibly empty) substring of s
preceding the first match, and ai is the (possibly empty) substring
between the matches bi and b(i+l). Then it computes and returns
fa(an, fb(vecn, ..., fa(al, fb(vecl, fa(al0, e))) ...))

REGEX 141

where veci is the match vector corresponding to bi. Raises Regex
if it fails to make progress in decomposing s.

If we define the auxiliary functions

fun fapp £ (x, r) = f x 1t ¢

fun get i vec = Substring.string(Vector.sub(vec, 1))
then

map regex f s List.rev (fold regex (#2, fapp f) [] s)
app regex f s fold regex (ignore, f o #1) () s
fields regex s List.rev (fold regex (op ::, #2) [] s)
substitute regex f s =

Substring.concat (List.rev

(fold regex (op ::, fapp (Substring.all o f o get 0)) [] s))

142 SML90

Module SML90

SML90 -- part of the initial basis of the 1990 Definition

Math

val sqgrt : real -> real
val sin : real -> real
val cos : real -> real
val arctan : real -> real
val exp : real -> real
val 1n : real -> real
Strings

val chr : int -> string
val ord : string -> int

val explode : string -> string list
val implode : string list -> string

exception Abs
and Diff
and Exp
and Floor
and Neg
and Prod
and Sum
and Mod
and Quot

Input/output

type instream and outstream

val std_in : instream

val open_in : string -> instream

val input : instream * int -> string
val lookahead : instream -> string

val close_in : instream -> unit

val end_of_stream : instream -> bool

val std_out : outstream
val open_out : string -> outstream
val output : outstream * string -> unit

val close_out : outstream -> unit

SIGNAL 143

Module Signal

Signal -- SML Basis Library
eqtype signal

val abrt : signal
val alrm : signal
val bus : signal
val fpe : signal
val hup : signal
val i1l : signal
val int : signal
val kill : signal
val pipe : signal
val quit : signal
val segv : signal
val term : signal
val usrl : signal
val usr2 : signal
val chld : signal
val cont : signal
val stop : signal
val tstp : signal
val ttin : signal
val ttou : signal

val toWord : signal -> Word.word
val fromWord : Word.word -> signal

[signal] is the type of Unix/Posix-style signals, which can be sent
to another process.

[toWord sig] returns the signal number as an unsigned word.
[fromWord w] returns the signal whose number is w.
[abrt] is SIGABRT, the abort signal from abort (3).
[alrm] is SIGALRM, a timer signal from alarm(l).
[bus] 1is SIGBUS, a bus error.

[fpe] 1is SIGFPE, a floating point exception.
[hup] 1is SIGHUP, a hangup.

[111] is SIGILL, an illegal instruction.

[int] is SIGINT, an interrupt.

[kill] is SIGKILL, the kill signal.

[pipe] is SIGPIPE, a broken pipe.

[quit] is SIGQUIT, a quit from keyboard.

[segv] 1s SIGSEGV, a segmentation violation.

[term] is SIGTERM, the termination signal.

144

[usrl]
[usr2]
[chld]
[cont]
[stop]
[tstp]
[ttin]

[ttou]

is
is
is
is
is
is
is

is

SIGUSRI,
SIGUSR2,
SIGCHLD,
SIGCONT,
SIGSTOP,
SIGTSTP,
SIGTTIN,

SIGTTOU,

SIGNAL

the first user signal.

the second user signal.

child process stopped or terminated.
continue if stopped.

signal to stop process.

a stop signal typed at the tty.

tty input for background process.

tty output for background process.

SOCKET 145

Module Socket

Socket -- SML Basis Library -- requires Dynlib

type (’addressfam, ’socktype) sock
type "addressfam sock_addr

Socket types

type dgram A datagram socket

type 'a stream A stream socket

type passive A passive stream

type active An active, connected, stream

Socket protocol families

type pf_file The Unix file protocol family
type pf_inet The Internet protocol family
Address constructors

val fileAddr . string -> pf_file sock_addr

val inetAddr : string -> int -> pf_inet sock_addr

Socket constructors

val fileStream : unit -> (pf_file, ’'a stream) sock

(

val fileDgram : unit -> (pf_file, dgram) sock
val inetStream : unit -> (pf_inet, ’'a stream) sock
val inetDgram : unit -> (pf_inet, dgram) sock
val accept : ("a, passive stream) sock

-> ('a, active stream) sock * ’'a sock_addr
val bind : ("a, 'b) sock * 'a sock_addr -> unit
val connect ("a, "b) sock * "a sock_addr -> unit
val listen : ("a, passive stream) sock * int -> unit

(I

val close a, '"b) sock -> unit

Socket management
datatype shutdown_mode =

NO_RECVS No further receives
| NO_SENDS No further sends
| NO_RECVS_OR_SENDS No receives nor sends
val shutdown : ("a, 'b stream) sock * shutdown_mode -> unit

type sock_desc

val sockDesc : ("a, '"b) sock -> sock_desc
val sameDesc : sock_desc * sock_desc -> bool
val compare : sock_desc * sock_desc -> order

val select
{ rds : sock_desc list, wrs : sock_desc list, exs : sock_desc list,
timeout : Time.time option }
-> { rds : sock_desc list, wrs : sock_desc list, exs : sock_desc list }

val getinetaddr : pf_inet sock_addr -> string

Sock I/0 option types

type out_flags = { don’t_route : bool, oob : bool }
type in_flags = { peek : bool, oob : bool }

type "a buf = { buf : "a, ofs : int, size : int option }

146 SOCKET

Socket output operations

val sendVec : ("a, active stream) sock * Word8Vector.vector buf -> int

val sendArr : ("a, active stream) sock * Word8Array.array buf -> int

val sendVec’ ¢ ("a, active stream) sock * Word8Vector.vector buf
* out_flags -> int

val sendArr’ : ("a, active stream) sock * Word8Array.array buf
* out_flags -> int

val sendVecTo : (’a, dgram) sock * 'a sock_addr * Word8Vector.vector buf
-> int

val sendArrTo : (’a, dgram) sock * 'a sock_addr * Word8Array.array buf
-> int

val sendVecTo’ : (’a, dgram) sock * "a sock_addr * Word8Vector.vector buf
* out_flags -> int

val sendArrTo’ : (’a, dgram) sock * ’"a sock_addr * Word8Array.array buf

* out_flags -> int

Socket input operations

val recvVec : ("a, active stream) sock * int -> Word8Vector.vector
val recvArr : ("a, active stream) sock * Word8Array.array buf -> int
val recvVec’ : ("a, active stream) sock * int * in_flags
-> Word8Vector.vector
val recvArr’ : ("a, active stream) sock * Word8Array.array buf * in_flags
-> int
val recvVecFrom : (’a, dgram) sock * int
-> Word8Vector.vector * ’'a sock_addr
val recvArrFrom : ('"a, dgram) sock * Word8Array.array buf
-> int * ’'a sock_addr
val recvVecFrom’ : (’"a, dgram) sock * int * in_flags
-> Word8Vector.vector * ’'a sock_addr
val recvArrFrom’ : (’"a, dgram) sock * Word8Array.array buf * in_flags

-> int * 'a sock_addr

Structure Socket defines functions for creating and using sockets,
a means for communication between SML processes on the same machine
or via a network.

[("addressfam, ’socktype) sock] is the type of sockets with address
family ’'addressfam and having type ’socktype.

["addressfam sock_addr] is the type of sockets addresses.
The possible address (protocol) families are

type pf_file The Unix address family (file)
type pf_inet The Internet address family

The possible socket types are

type dgram datagram sockets

type "a stream stream sockets

type passive passive stream sockets

type active active, or connected, stream sockets

[fileAddr fname] returns a socket address for the Unix protocol
family, created from the given file name fname.

[inetAddr inetaddr portno] returns a socket address for the
Internet protocol family, created from the given Internet number
(e.g. "130.225.40.253") and port number (e.g. 8080).

[fileStream ()] returns a new stream socket for the Unix protocol

SOCKET 147

family.

[fileDgram ()] returns a new datagram socket for the Unix protocol
family.

[inetStream ()] returns a new stream socket for the Internet

protocol family.

[inetDgram ()] returns a new datagram socket for the Internet
protocol family.

[accept sock] extracts the first connection on the queue of pending
connections to sock. Returns (sock’, addr) where sock’ is a copy
of the socket sock, bound to that connection, and addr is the
address of the communications counterpart (the other end of the
connection). Blocks if no connections are pending. The stream
socket sock must have been assigned a name (with bind) and must be
listening for connections (following a call to listen).

[bind sock addr] binds the socket sock to the address addr, that
is, assigns the name addr to the socket. Binding a name in the
Unix protocol family creates a socket in the file system that must
be deleted when it is no longer needed

[connect (sock, addr)] attempts to connect socket sock to the
communications peer at address addr. If sock is a datagram socket,
then addr is the address to which datagrams is to be sent, and the
only address from which datagrams will be accepted. 1If sock is a
stream socket, then addr specifies another socket to which to
connect.

[listen (sock, queuelen)] enables the passive stream socket sock to
accept incoming connections. The parameter queuelen specifies the
maximal number of pending connections. Further connections from
clients may be refused when this limit is reached.

[close sock] closes the socket.

[shutdown sock shutdown_mode] shuts down socket sock for further
communication, as specified by the shutdown_mode parameter:

[NO_RECVS] no further receives are allowed;
[NO_SENDS] no further sends are allowed;
[NO_RECVS_OR_SENDS] no further receives or sends are allowed.

[getinetaddr addr] returns the Internet number
(e.g. "130.225.40.253") of the Internet socket address addr.

["a buf] is the type of records { buf, ofs, size } which represent
subvectors or subarrays:

if size = SOME s it represents buf[ofs..ofs+s-1];

if size = NONE it represents buffofs..len-1] where len is buf’s length.
When the subbuffer is used in a call, exception Subscript will be raised
if ofs < 0 or size < 0 or ofs+size > len.

[sendVec (sock, vecbuf)] transmits the bytes from buffer vecbuf on
the active stream socket sock. Returns the number of bytes sent.
Blocks until sufficient space is available at the socket.

148 SOCKET

[sendArr (sock, arrbuf)] is analogous til sendVec.

[sendVec’ (sock, vecbuf, out_flags)] transmits the bytes from
buffer vecbuf on the active stream socket sock, observing the
out_flags. Returns the number of bytes sent. Blocks until
sufficient space is available at the socket.

[out_flags] 1is the type of records { don’t_route, oob } in which
the field don’t_route specifies whether routing should be bypassed,
and the field oob specifies whether data should be sent out-of-band.

[sendArr’ (sock, arrbuf, out_flags)] is analogous til sendVec’.

[sendVecTo (sock, addr, vecbuf)] transmits the bytes from buffer
vecbuf on the datagram socket sock to the target address addr.
Returns the number of bytes sent. Blocks until sufficient space is
available at the socket.

[sendArrTo (sock, addr, arrbuf)] is analogous til sendVecTo.

[sendVecTo’ (sock, addr, vecbuf, out_flags)] transmits the bytes
from buffer vecbuf on the datagram socket sock to the target
address addr, observing the out_flags. Returns the number of bytes
sent. Blocks until sufficient space is available at the socket.
See above for a description of vecbuf and out_flags.

[sendArrTo’ (sock, addr, arrbuf, out_flags)] is analogous til sendVecTo’.

[recvVec (sock, n)] receives up to n bytes from the active stream
socket sock. Returns a byte vector containing the bytes actually
received. Blocks until some data become available at the socket,
then returns any available data, up to n bytes. Excess data are

not lost; they are available for subsequent receive calls.

[recvArr (sock, arrbuf)] receives bytes from the active stream
socket sock into the subarray arrbuf, up to the available space.
If #size(arrbuf) = SOME(s) the available space is s bytes; if
#size (arrbuf) = NONE the available space is len - #ofs(arrbuf)
bytes. Returns the number of bytes actually received. Blocks
until some data become available at the socket. Excess data are
not lost; they are available for subsequent receive calls.

[recvVec’ (sock, n, in_flags)] receives up to n bytes from the
active stream socket sock, observing the in_flags. Returns a byte
vector containing the bytes actually received. Blocks until some
data become available at the socket, then returns any available
data, up to n bytes. Data in excess of n bytes are not lost; they
are available for subsequent receive calls.

[in_flags] is the type of records { peek, oob } in which the field
peek specifies that the data read should not be removed from the
receive queue, and the field oob specifies that data may be
received out-of-band.

[recvArr’ (sock, arrbuf, in_flags)] receives bytes from the active
stream socket sock into the subarray arrbuf, observing the
in_flags, up to the available space.. Returns the number of bytes
actually received. Blocks until some data become available at the
socket. Excess data are not lost; they are available for
subsequent receive calls.

SOCKET 149

[recvVecFrom (sock, n)] receives up to n bytes from the datagram
socket sock. Returns a byte vector containing the bytes actually
received. Blocks until some data become available at the socket,
then returns any available data, up to n bytes.

[recvArrFrom (sock, arrbuf)] receives bytes from the datagram
socket sock into the subarray arrbuf. Returns the number of bytes
actually received. Blocks until some data become available at the
socket.

[recvVecFrom’ (sock, n, in_flags)] receives up to n bytes from the
datagram socket sock, observing the in_flags (see above). Returns
(vec, addr) where vec is a byte vector containing the bytes
actually received, and addr is the source address of the message.
Blocks until some data become available at the socket, then returns
any available data, up to n bytes.

[recvArrFrom’ (sock, arrbuf, in_flags)] receives bytes from the
datagram socket sock into the array buffer arrbuf, observing the
in_flags (see above). Returns (n, addr) where n is the number of
bytes actually received, and addr is the source address of the
message. Blocks until some data become available at the socket.

[sockDesc sock] returns a descriptor for the socket sock, to be
used in a call to select.

[compare (sdl, sd2)] compares sdl and sd2 according to an
unspecified total ordering, and returns LESS if sdl precedes sd2,
returns GREATER is sdl precedes sd2, and returns EQUAL otherwise.

[sameDesc (sdl, sd2)] returns true if sdl and sd2 describe the same
socket. Equivalent to compare(sdl, sd2) = EQUAL.

[select { rds, wrs, exs, timeout }] blocks the calling process
until some input/output operations become possible on some sockets.
The call will check the sockets described in rds for reading, those
in wrs for writing, and those in exs for exceptional conditions.
Returns { rds, wrs, exs } where rds now is a list of descriptors of
sockets ready for reading, wrs are ready for writing, and exs have
exceptional conditions. The order of the socket descriptors in the
results is the same as their order in the corresponding arguments.
If timeout is NONE then the call blocks until some input/output
operations become possible; if timeout is SOME (t) then the call
blocks for at most time t.

A server socket is considered ready for reading if there is a
pending connection which can be accepted with ‘accept’. A client
socket is ready for writing when its connection is fully
established.

150 SPLAYMAP

Module Splaymap

Splaymap -- applicative maps implemented by splay-trees
From SML/NJ 1ib 0.2, copyright 1993 by AT&T Bell Laboratories

type ('key, ’a) dict

exception NotFound

val mkDict '_key * '_key -> order) -> (’_key, ’'_a) dict
val insert ' _key, '_a) dict * '_key * '_a -> ('_key, '_a) dict
val find "key, ’a) dict * 'key -> 'a
val peek "key, 'a) dict * ’'key -> 'a option
14

val remove _key, '_a) dict * ’'_key -> ('_key, '_a) dict * '_a

val numItems "key,) dict -> int

) dict -> (‘key * ’a) list
val app "key * "a -> unit) -> ('key,’a) dict -> unit
val revapp "key * "a -> 'b) -> ('key,’a) dict -> unit

(

(

(

(

(

("a
val listItems : (’'key, ’a

(!

(1

(I

(

(

(

val foldr "key * 'a * 'b -> 'b)-> b -> ('key,’a) dict -> 'Db

val foldl "key * 'a * 'b -> 'b) -> b -> ('key,’a) dict -> 'Db

val map : ("_key * 'a > '_b) > ('_key,’a) dict -> (’'_key, ’'_b) dict
val transform : ('

a > b)) —> (T_key,’a) dict -> (’_key, ’'_b) dict

[("key, "a) dict] is the type of applicative maps from domain type
"key to range type ’a, or equivalently, applicative dictionaries
with keys of type 'key and values of type ’'a. They are implemented
as ordered splay-trees (Sleator and Tarjan).

[mkDict ordr] returns a new, empty map whose keys have ordering
ordr.

[insert (m, i, v)] extends (or modifies) map m to map i to v.

[find (m, k)] returns v if m maps k to v; otherwise raises NotFound.
[peek (m, k)] returns SOME v if m maps k to v; otherwise returns NONE.
[remove (m, k)] removes k from the domain of m and returns the
modified map and the element v corresponding to k. Raises NotFound

if k is not in the domain of m.

[numItems m] returns the number of entries in m (that is, the size
of the domain of m).

[listItems m] returns a list of the entries (k, v) of keys k and
the corresponding values v in m, in increasing order of k.

l[app f m] applies function f to the entries (k, v) in m, in
increasing order of k (according to the ordering ordr used to
create the map or dictionary).

[revapp f m] applies function f to the entries (k, v) in m, in
decreasing order of k.

[foldl f e m] applies the folding function f to the entries (k, v)
in m, in increasing order of k.

[foldr £ e m] applies the folding function f to the entries (k, v)
in m, in decreasing order of k.

SPLAYMAP 151

[map f m] returns a new map whose entries have form (k, f(k,v)),
where (k, v) is an entry in m.

[transform f m] returns a new map whose entries have form (k, f v),
where (k, v) 1s an entry in m.

152

Module Splayset

Splayset -- applicative sets implemented by splay-trees

From SML/NJ 1ib 0.2,

type 'item set

exception NotFound

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val

empty : ('_item * ' _item -> order) -> ' _item set
singleton : (/_item * ’'_item -> order) -> '_item -> '_item set
add : /_item set * /_item -> '_item set

addList : '_item set * /_item list -> '_item set
retrieve : 'item set * 'item -> 'item

peek : 'item set * 'item -> ‘item option

isEmpty : 'item set -> bool

equal : 'item set * 'item set -> bool

isSubset : 'item set * 'item set -> bool

member : 'item set * 'item -> bool

delete ;' _item set * '_item -> '_item set

numItems : 'item set -> int

union ./ _item set * '_item set -> '_item set
intersection : ’_item set * /_item set -> /_item set
difference : '_item set * '_item set -> '_item set
listItems : 'item set -> ’item list

app ¢ ("item -> unit) -> ’item set -> unit

revapp ¢ ("item -> unit) -> ’item set -> unit

foldr : ("item * 'b -> 'b) -> 'b -> 'item set > 'Db
foldl : ("item * 'b -> 'b) -> 'b -> 'item set -> 'Db
find ("item -> bool) -> ’item set -> "item option

["item set] is the type of sets of ordered elements of type ’item.
The ordering relation on the elements is used in the representation
of the set. The result of combining two sets with different
underlying ordering relations is undefined. The implementation
uses splay-trees (Sleator and Tarjan).

[empty ordr] creates a new empty set with the given ordering
relation.

[singleton ordr i] creates the singleton set containing i, with the
given ordering relation.

[add(s, 1)] adds item i to set s.

[addList (s, xs)] adds all items from the list xs to the set s.
[retrieve(s, 1)] returns i if it is in s; raises NotFound otherwise.
[peek (s, 1)] returns SOME i if i is in s; returns NONE otherwise.
[isEmpty s] returns true if and only if the set is empty.

[equal (s1, s2)] returns true if and only if the two sets have the
same elements.

[isSubset (sl, s2)] returns true if and only if sl is a subset of s2.

[member (s, 1)] returns true if and only if i is in s.

SPLAYSET

copyright 1993 by AT&T Bell Laboratories

SPLAYSET 153

[delete(s, 1)] removes item 1 from s. Railses NotFound if i is not in s.
[numItems s] returns the number of items in set s.

[union(sl, s2)] returns the union of sl and s2.

[intersection(sl, s2)] returns the intersectionof sl and s2.

[difference(sl, s2)] returns the difference between sl and s2 (that
is, the set of elements in sl but not in s2).

[listItems s] returns a list of the items in set s, in increasing
order.

l[app f s] applies function f to the elements of s, in increasing
order.

[revapp f s] applies function f to the elements of s, in decreasing
order.

[foldl f e s] applies the folding function f to the entries of the
set in increasing order.

[foldr f e s] applies the folding function f to the entries of the
set in decreasing order.

[find p s] returns SOME i, where i is an item in s which satisfies
p, if one exists; otherwise returns NONE.

154

Module String

String -- SML Basis Library

loc

in

end

al
type char = Char.char

type string = string

val maxSize : int

val size : string -> int

val sub : string * int -> char

val substring : string * int * int -> string

val extract : string * int * int option -> string
val * : string * string -> string

val concat : string list -> string

val concatWith : string -> string list -> string
val str : char -> string

val implode : char list -> string

val explode : string -> char list

val map char -> char) -> string -> string

val translate
val tokens

char -> string) -> string -> string
char -> bool) -> string -> string list

val fields char -> bool) -> string -> string list

val compare : string * string -> order

val collate : (char * char -> order) -> string * string -> order
val isPrefix : string —> string -> bool

val isSuffix : string —> string -> bool

val isSubstring : string -> string -> bool

val fromString : string -> string option ML escape sequences
val toString : string -> string ML escape sequences
val fromCString : string -> string option C escape sequences
val toCString : string -> string C escape sequences
val < : string * string -> bool

val <= : string * string -> bool

val > : string * string -> bool

val >= : string * string -> bool

STRING

[string] is the type of immutable strings of characters, with
constant-time indexing.

[maxSize] 1is the maximal number of characters in a string.
[size s] is the number of characters in string s.

[sub(s, 1)] is the i’th character of s, counting from zero.
Raises Subscript if i<0 or i>=size s.

[substring(s, i, n)] is the string s[i..i+n-1]. Raises Subscript
if i<0 or n<0 or i+n>size s. Equivalent to extract(s, i, SOME n).

[extract (s, 1, NONE)] is the string s[i..size s-1].
Raises Subscript if i<0 or i>size s.

[extract (s, i, SOME n)] is the string s[i..i+n-1].

STRING

Raises Subscript if i<0 or n<0 or i+n>size s.
[sl » s2] is the concatenation of strings sl and s2.

[concat ss] is the concatenation of all the strings in ss.
Raises Size if the sum of their sizes is greater than maxSize.

[concatWith sep ss] is the concatenation of all the strings in ss,
using sep as a separator. Thus

concatWith sep ss is the empty string ""
concatWith sep [s] is s
concatWith sep [sl, ..., sn] 1s concat[sl, sep, ..., sep, sn].

Raises Size if the resulting string would have more than maxSize
characters.

[str c] is the string of size one which contains the character c.

[implode cs] is the string containing the characters in the list cs.
Equivalent to concat (List.map str cs).

[explode s] is the list of characters in the string s.

[map £ s] applies f to every character of s, from left to right,
and returns the string consisting of the resulting characters.
Equivalent to CharVector.map f s

and to 1implode (List.map f (explode s)).

[translate f s] applies f to every character of s, from left to
right, and returns the concatenation of the resulting strings.
Raises Size if the sum of their sizes is greater than maxSize.
Equivalent to concat (List.map f (explode s)).

[tokens p s] returns the list of tokens in s, from left to right,
where a token is a non-empty maximal substring of s not containing
any delimiter, and a delimiter is a character satisfying p.

[fields p s] returns the list of fields in s, from left to right,
where a field is a (possibly empty) maximal substring of s not
containing any delimiter, and a delimiter is a character satisfying p.

Two tokens may be separated by more than one delimiter, whereas two
fields are separated by exactly one delimiter. If the only delimiter
is the character #"|", then

"abc| |def" contains two tokens: "abc" and "def"

"abc| |def" contains three fields: "abc" and "" and "def"

[isPrefix sl s2] is true if sl is a prefix of s2.
That is, if there exists a string u such that sl * u = s2.

[isSuffix sl s2] is true if sl is a suffix of s2.
That is, 1f there exists a string t such that t * sl = s2.

[isSubstring sl s2] is true if sl is a substring of s2.
That is, 1f there exist strings t and u such that t * sl * u = s2.

[fromString s] scans the string s as an ML source program string,
converting escape sequences into the appropriate characters. Does
not skip leading whitespace.

[toString s] returns a string corresponding to s, with
non-printable characters replaced by ML escape sequences.

155

156 STRING

Equivalent to String.translate Char.toString.

[fromCString s] scans the string s as a C source program string,
converting escape sequences into the appropriate characters. Does
not skip leading whitespace.

[toCString s] returns a string corresponding to s, with
non-printable characters replaced by C escape sequences.
Equivalent to String.translate Char.toCString.

[compare (sl, s2)] does lexicographic comparison, using the
standard ordering Char.compare on the characters. Returns LESS,
EQUAL, or GREATER, according as sl is less than, equal to, or
greater than s2.

[collate cmp (sl, s2)] performs lexicographic comparison, using the
given ordering cmp on characters.

] compare strings lexicographically, using the representation
rdering on characters.

STRINGCVT 157

Module StringCvt

StringCvt -- SML Basis Library
datatype radix = BIN | OCT | DEC | HEX
datatype realfmt =
SCI of int option scientific, arg = # dec. digits, dflt=6
| FIX of int option fixed-point, arg = # dec. digits, dflt=6
| GEN of int option auto choice of the above,
arg = # significant digits, dflt=12

type cs character source state
type ("a, 'b) reader = 'b -> (a * 'b) option
val scanString : ((char, cs) reader -> (’'a, cs) reader) -> string -> ’'a option
char -> bool) -> (char, reader -> 'a -> string * 'a

) Va) r
char -> bool) -> (char, '"a) reader -> 'a -> string
) —> (char, "a) reader -> 'a -> 'a
r

val splitl (

val takel (

val dropl : (char -> bool
(

val skipWs char, ’'a) reader -> 'a -> 'a
val padLeft : char -> int -> string -> string
val padRight : char -> int -> string -> string

This structure presents tools for scanning strings and values from
functional character streams, and for simple formatting.

[("elm, "src) reader] is the type of source readers for reading a
sequence of 'elm values from a source of type ’'src. For instance,
a character source reader

getc : (char, cs) reader
is used for obtaining characters from a functional character source
src of type cs, one at a time. It should hold that

getc src = SOME (c, src’) if the next character in src
is ¢, and src’ is the rest of src;
= NONE if src contains no characters

A character source scanner takes a character source reader getc as
argument and uses it to scan a data value from the character
source.

[scanString scan s] turns the string s into a character source and
applies the scanner ‘scan’ to that source.

[splitl p getc src] returns (pref, suff) where pref is the

longest prefix (left substring) of src all of whose characters
satisfy p, and suff is the remainder of src. That is, the first
character retrievable from suff, if any, is the leftmost character
not satisfying p. Does not skip leading whitespace.

[takel p getc src] returns the longest prefix (left substring) of
src all of whose characters satisfy predicate p. That is, if the
left-most character does not satisfy p, the result is the empty
string. Does not skip leading whitespace. It holds that

takel p getc src = #1 (splitl p getc src)

[dropl p getc src] drops the longest prefix (left substring) of

158

src all of whose characters satisfy predicate p. If all characters
do, it returns the empty source. It holds that
dropl p getc src = #2 (splitl p getc src)

[skipWS getc src] drops any leading whitespace from src.
Equivalent to dropl Char.isSpace.

[padLeft ¢ n s] returns the string s if size s >= n, otherwise pads
s with (n - size s) copies of the character c on the left.
In other words, right-justifies s in a field n characters wide.

[padRight ¢ n s] returns the string s if size s >= n, otherwise pads
s with (n - size s) copies of the character c on the right.
In other words, left-justifies s in a field n characters wide.

STRINGCVT

SUBSTRING

Module Substring

Substring -- SML Basis Library

type substring

val substring string * int * int -> substring

val extract string * int * int option -> substring

val full string -> substring

val all string -> substring

val string substring -> string

val base substring -> (string * int * int)

val isEmpty substring -> bool

val getc substring -> (char * substring) option

val first substring -> char option

val triml int -> substring -> substring

val trimr int -> substring -> substring

val sub substring * int -> char

val size substring -> int

val slice substring * int * int option -> substring
val concat substring list -> string

val concatWith string -> substring list -> string

val explode substring -> char list

val compare substring * substring -> order

val collate (char * char -> order) -> substring * substring -> order
val dropl (char -> bool) -> substring -> substring
val dropr (char -> bool) —-> substring -> substring
val takel (char -> bool) -> substring -> substring
val taker (char -> bool) -> substring -> substring
val splitl (char -> bool) -> substring -> substring
val splitr (char -> bool) -> substring -> substring
val splitAt substring * int -> substring * substring
val position string -> substring -> substring * substr
val isPrefix string -> substring -> bool

val isSuffix : string -> substring -> bool

val isSubstring : string -> substring -> bool

exception Span

val span substring * substring -> substring

val translate (char -> string) -> substring -> string
val tokens (char -> bool) -> substring -> substring
val fields (char -> bool) -> substring -> substring list
val foldl (char * "a -> "a) -> 'a -> substring -> ’a
val foldr (char * "a -> "a) -> ’'a -> substring -> 'a
val app (char -> unit) -> substring -> unit

* substring
* substring

ing

list

159

[substring] is the type of substrings of a basestring, an efficient
representation of a piece of a string.

A substring (s,1i,n)

is valid if 0 <= 1 <= i+n <= size s,
or equivalently,

0 <=1 and 0 <= n and i+n <= size s.

A valid substring (s, i, n) represents the string s[i...i+n-1].

Invariant in the implementation: Any value of type substring is valid.

A substring is the same as a CharVectorSlice.slice,

so substrings

160 SUBSTRING

may be processed using the functions declared in CharVectorSlice.

[substring(s, i, n)] creates the substring (s, i, n), consisting of
the substring of s with length n starting at i. Raises Subscript
if i<0 or n<0 or i+n > size s. Equivalent to extract(s, i, SOME n).

[extract(s, 1, NONE)] creates the substring (s, i, size s-i)
consisting of the tail of s starting at 1i.
Raises Subscript if i<0 or i > size s.

[extract(s, 1, SOME n)] creates the substring (s, i, n),
consisting of the substring of s with length n starting at 1.
Raises Subscript if i<0 or n<0 or i+n > size s.

[full s] is the substring (s, 0, size s).

[all s] is the same as full(s). Its use is deprecated.
[string sus] is the string s[i..i+n-1] represented by sus = (s, i, n).
[base sus] is the concrete triple (s, i, n), where sus = (s, i, n).

[isEmpty (s, 1, n)] true if the substring is empty (that is, n = 0).

[getc sus] returns SOME (c, rst) where c is the first character and
rst the remainder of sus, if sus is non-empty; otherwise returns
NONE. Note that

#1 o valOf o scanFn Substring.getc
is equivalent to, but more efficient than,

valOf o StringCvt.scanString scanFn o Substring.string

[first sus] returns SOME c where c is the first character in sus,
if sus is non-empty; otherwise returns NONE.

[triml k sus] returns sus less its leftmost k characters; or the
empty string at the end of sus if it has less than k characters.
Raises Subscript if k < 0, even in the partial application triml (k).

[trimr k sus] returns sus less its rightmost k characters; or the
empty string at the beginning of sus if it has less than k characters.
Raises Subscript if k < 0, even in the partial application triml (k).

[sub (sus, k)] returns the k’th character of the substring; that is,
s(it+k) where sus = (s, i1, n). Raises Subscript if k<0 or k>=n.

[size sus] returns the size n of the substring sus = (s, i, n).

[slice (sus, i’, NONE)] returns the substring (s, i+i’, n-i’), where
sus = (s, i, n). Raises Subscript if i’ < 0 or i’ > n.

[slice (sus, i’, SOME n’)] returns the substring (s, i+i’, n’), where
sus = (s, i, n). Raises Subscript if i’ < 0 or n’ < 0 or i’'+n’ > n.

[concat suss] returns a string consisting of the concatenation of
the substrings. Equivalent to String.concat (List.map string suss).
Raises Size if the resulting string would be longer than String.maxSize.

[concatWith sep suss] returns a string consisting of the
concatenation of the substrings in suss, using sep as a separator.
Equivalent to String.concatWith sep (List.map string suss). Raises
Size if the resulting string would be longer than String.maxSize.

SUBSTRING 161

[explode sus]
[s(i), s
where sus = (

returns the list of characters of sus, that is,
(i+1), ..., s(i+n-1)]
s, 1, n). Equivalent to String.explode(string ss).

[compare (susl, sus2)] performs lexicographic comparison, using the

standard ordering Char.compare on the characters. Returns LESS,

EQUAL, or GREATER, according as susl is less than, equal to, or

greater than sus2. Equivalent to, but more efficient than,
String.compare (string susl, string sus2).

[collate cmp (susl, sus2)] performs lexicographic comparison, using the
given ordering cmp on characters. Equivalent to, but more efficient
than, String.collate cmp (string susl, string sus2).

[dropl p sus] drops the longest prefix (left substring) of sus all
of whose characters satisfy predicate p. If all characters do, it
returns the empty substring (s, i+n, 0) where sus = (s, i, n).

[dropr p sus] drops the longest suffix (right substring) of sus all
of whose characters satisfy predicate p. If all characters do, it
returns the empty substring (s, i, 0) where sus = (s, i, n).

[takel p sus] returns the longest prefix (left substring) of sus
all of whose characters satisfy predicate p. That is, if the
left-most character does not satisfy p, returns the empty (s, i, 0)
where sus = (s, i, n).

[taker p sus] returns the longest suffix (right substring) of sus
all of whose characters satisfy predicate p. That is, if the
right-most character satisfies p, returns the empty (s, i+n, 0)
where sus = (s, i, n).

Let p be a predicate and xxxxfyyyyfzzzz a string where all
characters in xxxx and zzzz satisfy p, and f a is character
not satisfying p. Then

sus = xxxxfyyyyfzzzz SUS = XXXXZZZZ
dropl p sus = fyyyyfzzzz
dropr p sus = xxxxfyyyyf
takel p sus = xxxx XXXXZZZ7Z
taker p sus = 2222 XXXKZZZ7Z

It also holds that
concat [takel p sus, dropl p sus] = string sus
concat [dropr p sus, taker p sus] = string sus

[splitl p sus] splits sus into a pair (susl, sus2) of substrings
where susl is the longest prefix (left substring) all of whose
characters satisfy p, and sus2 is the rest. That is, sus2 begins
with the leftmost character not satisfying p. Disregarding
sideeffects, we have:

splitl p sus = (takel p sus, dropl p sus).

[splitr p sus] splits sus into a pair (susl, sus2) of substrings
where sus2 is the longest suffix (right substring) all of whose
characters satisfy p, and susl is the rest. That is, susl ends
with the rightmost character not satisfying p. Disregarding
sideeffects, we have:

splitr p sus = (dropr p sus, taker p sus)

162 SUBSTRING

[splitAt (sus, k)] returns the pair (susl, sus2) of substrings,
where susl contains the first k characters of sus, and sus2
contains the rest. Raises Subscript if k < 0 or k > size sus.

[isPrefix sl s2] is true if sl is a prefix of s2. That is, if there
exists a string u such that sl * u = string s2.

[isSuffix sl s2] is true if sl is a suffix of s2. That is, if there
exists a string t such that t » sl = string s2.

[isSubstring sl s2] is true if sl is a substring of s2. That is, if
there exist strings t and u such that t ~ sl *~ u = string s2.

[position s (s’,i,n)] splits the substring into a pair (pref, suff)
of substrings, where suff is the longest suffix of (s’, i, n) which
has s as a prefix. More precisely, let m = size s. If there is a

least index k in i..i+n-m for which s = s’ [k..k+m-1],

then the result is pref = (s’, i, k-1) and suff = (s’, k, n—(
otherwise the result is pref = (s’, i, n) and suff (s, i+n, O

k-1));
).

[span (susl, sus2)] returns a substring spanning from the start of
susl to the end of sus2, provided this is well-defined: susl and
sus2 must have the same underlying string, and the start of susl
must not be to the right of the end of sus2; otherwise raises Span.

More precisely, if base(susl) = (s,i,n) and base(sus2) = (s’,i’,n’)
and s = s’ and i <= i’+n’, then base(join(susl, sus2)) = (s, i, i'+n’-i).
This may be used to compute ‘span’, ‘union’, and ‘intersection’.

[translate f sus] applies f to every character of sus, from left to
right, and returns the concatenation of the results. Raises Size
if the sum of their sizes is greater than String.maxSize.
Equivalent to String.concat (List.map f (explode sus)).

[tokens p sus] returns the list of tokens in sus, from left to right,
where a token is a non-empty maximal substring of sus not containing
any delimiter, and a delimiter is a character satisfying p.

[fields p sus] returns the list of fields in sus, from left to right,
where a field is a (possibly empty) maximal substring of sus not
containing any delimiter, and a delimiter is a character satisfying p.

Two tokens may be separated by more than one delimiter, whereas two
fields are separated by exactly one delimiter. If the only delimiter
is the character #"|", then

"abc| |def" contains two tokens: "abc" and "def"

"abc| |def" contains three fields: "abc" and "" and "def"

[foldl f e sus] folds f over sus from left to right. That is,
evaluates f(s[i+n-1], £(... f(s[i+1l], f(s[i] % e)) ...))
tail-recursively, where sus = (s, i, n).

Equivalent to List.foldl f e (explode sus).

[foldr f e sus] folds f over sus from right to left. That is,
evaluates f(s([i], f(s[i+1l], f(... f(s[i+n-1] % e) ...)))
tail-recursively, where sus = (s, i, n).

Equivalent to List.foldr f e (explode sus).

[app f sus] applies f to all characters of sus, from left to right.
Equivalent to List.app f (explode sus).

SUSP

Module Susp

Susp -- support for lazy evaluation
type "a susp

val delay : (unit -> "a) -> ’'a susp
val force : ’'a susp > 'a

163

["a susp] 1s the type of lazily evaluated expressions with result
type "a.

[delay (fn () => e)] creates a suspension for the expression e.

The first time the suspension is forced, the expression e will be
evaluated, and the result stored in the suspension. All subsequent
forcing of the suspension will just return this result, so e is
evaluated at most once. If the suspension is never forced, then e
is never evaluated.

[force su] forces the suspension su and returns the result of the
expression e stored in the suspension.

164 TEXTIO

Module TextIO

TextIO -- SML Basis Library

type elem = Char.char
type vector = string

Text input

type instream

val openln : string -> instream

val closeln : instream -> unit

val input : instream -> vector

val inputAll : instream -> vector

val inputNoBlock : instream -> vector option
val inputl : instream -> elem option
val inputN : instream * int -> vector
val inputLine : instream -> string option
val endOfStream : instream -> bool

val lookahead : instream -> elem option

type cs character source state

val scanStream : ((char, cs) StringCvt.reader -> ('a, cs) StringCvt.reader)
-> instream -> ’a option

val stdIn : instream
Text output

type outstream

val openOut : string -> outstream

val openAppend : string -> outstream

val closeOut : outstream -> unit

val output : outstream * vector -> unit
val outputl : outstream * elem -> unit

val outputSubstr : outstream * substring -> unit
val flushOut : outstream -> unit

val stdOut ¢ outstream

val stdErr ¢ outstream

val print : string -> unit

This structure provides input/output functions on text streams.
The functions are state-based: reading from or writing to a stream
changes the state of the stream. The streams are buffered: output
to a stream may not immediately affect the underlying file or
device.

Note that under DOS, Windows, 0S/2, and MacOS, text streams will be
‘translated’ by converting (e.g.) the double newline CRLF to a
single newline character \n.

[instream] is the type of state-based character input streams.

[outstream] is the type of state-based character output streams.

TEXTIO 165

[elem] is the type char of characters.

[vector] 1is the type of character vectors, that is, strings.

TEXT INPUT:

[openIn s] creates a new instream associated with the file named s.
Raises Io.Io is file s does not exist or is not accessible.

[closeIn istr] closes stream istr. Has no effect if istr is closed
already. Further operations on istr will behave as if istr is at
end of stream (that is, will return "" or NONE or true).

[input istr] reads some elements from istr, returning a vector v of
those elements. The vector will be empty (size v = 0) if and only
if istr is at end of stream or is closed. May block (not return
until data are available in the external world).

[inputAll istr] reads and returns the string v of all characters
remaining in istr up to end of stream.

[inputNoBlock istr] returns SOME(v) if some elements v can be read
without blocking; returns SOME("") if it can be determined without
blocking that istr is at end of stream; returns NONE otherwise. If
istr does not support non-blocking input, raises
TIo.NonblockingNotSupported.

[inputl istr] returns SOME(e) if at least one element e of istr is
available; returns NONE if istr is at end of stream or is closed;
blocks if necessary until one of these conditions holds.

[inputN(istr, n)] returns the next n characters from istr as a
string, if that many are available; returns all remaining
characters if end of stream is reached before n characters are
available; blocks if necessary until one of these conditions holds.
(This is the behaviour of the ‘input’ function prescribed in the
1990 Definition of Standard ML).

[inputLine istr] returns SOME 1ln, where 1ln is one line of text,
including the terminating newline character. If end of stream is
reached before a newline character, then the remaining part of the
stream is returned, with a newline character added. 1If istr is at
end of stream or is closed, then NONE is returned.

[endOfStream istr] returns false if any elements are available in
istr; returns true if istr is at end of stream or closed; blocks if
necessary until one of these conditions holds.

[lookahead istr] returns SOME (e) where e is the next element in the
stream; returns NONE if istr is at end of stream or is closed;
blocks if necessary until one of these conditions holds. Does not
advance the stream.

[stdIn] is the buffered state-based standard input stream.

[scanStream scan istr] turns the instream istr into a character
source and applies the scanner ‘scan’ to that source. See
StringCvt for more on character sources and scanners. The Moscow
ML implementation currently can backtrack only 512 characters, and
raises Fail if the scanner backtracks further than that.

166 TEXTIO

TEXT OUTPUT:

[openOut s] creates a new outstream associated with the file named
s. If file s does not exist, and the directory exists and is
writable, then a new file is created. 1If file s exists, it is
truncated (any existing contents are lost).

[openAppend s] creates a new outstream associated with the file
named s. If file s does not exist, and the directory exists and is
writable, then a new file is created. 1If file s exists, any
existing contents are retained, and output goes at the end of the
file.

[closeOut ostr] closes stream ostr; further operations on ostr
(except for additional close operations) will raise exception Io.Io.

[output (ostr, v)] writes the string v on outstream ostr.
[outputl (ostr, e)] writes the character e on outstream ostr.

[flushOut ostr] flushes the outstream ostr, so that all data
written to ostr becomes available to the underlying file or device.

[stdOut] is the buffered state-based standard output stream.

[stdErr] is the unbuffered state-based standard error stream. That
is, it is always kept flushed, so flushOut (stdErr) is redundant.

[print s] outputs s to stdOut and flushes immediately.

The functions below are not yet implemented:

[setPosIn(istr, i)] sets istr to the (untranslated) position 1i.
Raises Io.Io if not supported on istr.

[getPosIn istr] returns the (untranslated) current position of istr.
Raises Io.Io if not supported on istr.

[endPosIn istr] returns the (untranslated) last position of istr.
Because of translation, one cannot expect to read

endPosIn istr - getPosIn istr
from the current position.

[getPosOut ostr] returns the current position in stream ostr.
Raises To.Io if not supported on ostr.

[endPosOut ostr] returns the ending position in stream ostr.
Raises Io.Io if not supported on ostr.

[setPosOut (ostr, 1)] sets the current position in stream to ostr to
i. Raises Io.Io if not supported on ostr.

[mkInstream sistr] creates a state-based instream from the
functional instream sistr.

[getInstream istr] returns the functional instream underlying the
state-based instream istr.

TEXTIO 167

[setInstream(istr, sistr)] redirects istr, so that subsequent input
is taken from the functional instream sistr.

[mkOutstream sostr]

creates a state-based outstream from the
outstream sostr.

[getOutstream ostr] returns the outstream underlying the
state-based outstream ostr.

[setOutstream(ostr, sostr)] redirects the outstream ostr so that
subsequent output goes to sostr.

168 TIME

Module Time

Time -- SML Basis Library
eqtype time

exception Time

val zeroTime : time

val now :unit -> time
val toSeconds : time -> int
val toMilliseconds : time -> int
val toMicroseconds : time -> int
val fromSeconds : int -> time

val fromMilliseconds : int -> time
val fromMicroseconds : int -> time

val fromReal : real -> time

val toReal : time -> real

val toString : time -> string rounded to millisecond precision
val fmt : int -> time -> string

val fromString : string -> time option

val scan : (char, ’"a) StringCvt.reader

-> (time, 'a) StringCvt.reader

val + : time * time -> time
val - : time * time -> time
val < : time * time -> bool
val <= . time * time -> bool
val > : time * time -> bool
val >= : time * time -> bool

val compare : time * time -> order

[time] is a type for representing durations as well as absolute
points in time (which can be thought of as durations since some
fixed time zero). Times can be negative, zero, or positive.

[zeroTime] represents the O-second duration, and the origin of time,
so zeroTime + t = t + zeroTime = t for all t.

[now ()] returns the point in time at which the application occurs.
[fromSeconds s] returns the time value corresponding to s seconds.

[fromMilliseconds ms] returns the time value corresponding to ms
milliseconds.

[fromMicroseconds us] returns the time value corresponding to us
microseconds.

[toSeconds t] returns the number of seconds represented by t,
truncated (towards zero). Raises Overflow if that number is not
representable as an int.

[toMilliseconds t] returns the number of milliseconds represented
by t, truncated (towards zero). Raises Overflow if that number is
not representable as an int.

TIME 169

[toMicroseconds t] returns the number of microseconds represented
by t, truncated (towards zero). Raises Overflow if t that number
is not representable as an int.

[fromReal r] converts a real to a time value representing that many
seconds. It holds that fromReal 0.0 = zeroTime.

[toReal t] converts a time to the number of seconds it represents;
hence fromReal and toReal are inverses of each other.

[fmt n t] returns as a string the number of seconds represented by
t, rounded to n decimal digits. If n <= 0, then no decimal digits
are reported.

[toString t] returns as a string the number of seconds represented
by t, rounded to 3 decimal digits. Equivalent to (fmt 3 t).

[fromString s] returns SOME t where t is the time value represented
by the string s of form [\n\t]*[+~=]12(([0-91+(\.[0-9]+)2) | (\.[0-9]+));
or returns NONE if s cannot be parsed as a time value.

[scan getc src], where getc is a character accessor, returns SOME
(t, rest) where t is a time and rest is rest of the input, or NONE
if s cannot be parsed as a time value.

[+] adds two time values. For reals rl, r2 >= 0.0, it holds that
fromReal rl + fromReal r2 = fromReal (Real.+(rl,r2)).
Raises Overflow if the result is not representable as a time value.

[-] subtracts a time value from another. That is, tl - t2 is the
duration from t2 to tl (which may be negative).
It holds that t - zeroTime = t.

] compares time values. For instance, for reals rl, r2 >= 0.0
holds that fromReal rl < fromReal r2 iff Real.<(rl, r2)

[compare(tl, t2)] returns LESS, EQUAL, or GREATER, according
as tl precedes, equals, or follows t2 in time.

170 TIMER

Module Timer

Timer -- SML Basis Library

type cpu_timer
type real_timer

val startCPUTimer : unit -> cpu_timer

val totalCPUTimer : unit -> cpu_timer

val checkCPUTimer : cpu_timer -> { usr : Time.time, sys : Time.time }

val checkGCTime : cpu_timer -> Time.time

val checkCPUTimes : cpu_timer -> { nongc : {usr : Time.time, sys : Time.time},
gc : {usr : Time.time, sys : Time.time}

}

val startRealTimer : unit -> real_timer
val totalRealTimer : unit -> real_timer
val checkRealTimer : real_timer -> Time.time

[cpu_timer] is the type of timers for measuring CPU time consumption
(user time, garbage collection time, and system time).

[real_timer] is the type of timers for measuring the passing of
real time (wall-clock time).

[startCPUTimer ()] returns a cpu_timer started at the moment of
the call.
[totalCPUTimer ()] returns a cpu_timer started at the moment the

library was loaded.

[checkCPUTimer tmr] returns {usr, sys} where usr is the amount of
user CPU time consumed since tmr was started and sys is the amount
of system CPU time consumed since tmr was started. Note that
garbage collection time is included in the usr time. Under MS DOS
and MS Windows, usr time is measured as real time.

[checkGCTime tmr] returns the amount of user CPU time spent on
garbage collection since tmr was started. Under MS DOS and MS
Windows, gc time is measured in real time.

[checkCPUTimes tmr] returns the amount of CPU time consumed since
tmr was started spilt into time spend in the program (nongc) and on
garbage collecttion (gc). For both nongc and gc a record {usr, sys}
is returned where usr is the amount of user CPU time consumed since
tmr was started and sys is the amount of system CPU time consumed
since tmr was started. Note that Moscow ML will allways attribute
all the system CPU time to the program (nongc). That is,

#sys (#gc (checkCPUTimes tmr)) is always 0.

[startRealTimer ()] returns a real_timer started at the moment of
the call.
[totalRealTimer ()] returns a real_timer started at the moment the

library was loaded.

[checkRealTimer tmr] returns the amount of real time that has passed
since tmr was started.

UNIX

Module Unix

Unix -- SML Basis Library
signature Unix = sig

type ("a, 'b) proc

type signal = Signal.signal

val executelInEnv : string * string list * string list -> (’'a, ’b) proc
val execute : string * string list -> (’a, ’'b) proc
val streamsOf : (TextIO.instream, TextIO.outstream) proc

-> TextIO.instream * TextIO.outstream
TextIO.instream, ’"a) proc -> TextIO.instream
"a, TextIO.outstream) proc -> TextIO.outstream
BinIO.instream, ’"a) proc -> BinIO.instream

a, BinIO.outstream) proc -> BinIO.outstream

val textInstreamOf
val textOutstreamOf
val binInstreamOf

val binOutstreamOf !
!
I

(
(
(
(
(
(

val kill a, '"b) proc * signal -> unit
val reap a, '"b) proc —> 0S.Process.status
end

171

This structure allows Moscow ML programs to start other processes
and to communicate with them.

Child processes are not automatically terminated when the parent
(ML) process terminates. To forcibly terminate a child process pr,
use Unix.kill (pr, Signal.term). Then, to remove the terminated
process from the operating system tables, call Unix.reap(pr).

The protocol for communication between the ML program and its child
process must be designed with some care, typically using
non-blocking input for reading from the child process.

[proc] is the type of processes started by the ML program.

[signal] is the type of Unix-style signals, which can be sent to
another process. Signal values must be obtained from the Signal
structure.

[execute (cmd, args)] asks the operating system to execute the
command cmd with the argument list args, as a separate process.

Two pipes connected to the standard input and standard output of
the new process are created; these may be obtained using streamsOf.
A proc value representing the new process is returned. The new
process executes using the same environment as the calling process.
Raises Fail in case of failure, e.g. if the process or the pipes
cannot be created.

Typically, the cmd argument will be the full pathname of an
executable. On Unix systems, simple command searching as done by
the shell, allowing cmd to be a relative pathname, can be achieved
by using

execute ("/bin/sh", "-c" :: concat (cmd :: " " :: args))

[executeInEnv (cmd, args, env)] asks the operating system to
execute the command cmd with the argument list args in the
environment env, as a separate process. Returns a proc value
representing the new process. Typically, a string in the env list
has the form "NAME=VALUE". See also Process.getEnv.

[streamsOf pr] returns a pair (ins, outs) of input and output
streams associated with process pr. The standard output of pr is

172 UNIX

the source for the input stream ins, and the standard input of pr
is the sink for the output stream outs.

[textInstreamOf pr] returns the text input stream associated with
process pr. That is, the standard output of pr.

[textOutstreamOf pr] returns the text output stream associated with
process pr. That is, the standard input of pr.

[binInstreamOf pr] returns the binary input stream associated with
process pr. That is, the standard output of pr.

[binOutstreamOf pr] returns the binary output stream associated
with process pr. That is, the standard input of pr.

[reap pr] closes the input and output streams associated with pr,
and then suspends the current (ML) process until the process
corresponding to pr terminates. Returns the exit status given by
pr when it terminated. Raises Fail in case of failure, e.g. if pr
has already been reaped.

Under Unix, information about a terminated process remains in the
system tables until the process is reaped. Thus, an ML program
using execute or executeInEnv must make sure to reap any process it
has created, or else the system tables will fill up.

[kill (pr, s)] sends the signal s to the process pr. Raises Fail
in case of failure, e.g. if pr has already been killed.

VECTOR 173

Module Vector

Vector -- SML Basis Library

type 'a vector = ’"a vector

val maxLen : int

val fromList : 'a list -> 'a vector

val tabulate : int * (int -> 'a) -> 'a vector

val length : 'a vector -> int

val sub : 'a vector * int -> 'a

val update "a vector * int * 'a -> "a vector

val concat "a vector list -> ’'a vector

val find : ("a -> bool) -> ’"a vector -> "a option

val exists : ("a => bool) -> "a vector -> bool

val all : ("a —> bool) -> "a vector -> bool

val app ("a -> unit) -> 'a vector -> unit

val map ("a => 'b) -> "a vector -> ’'b vector

val foldl ("a * 'b => '"b) => 'b -> "a vector -> 'b

val foldr ("a * 'b => 'b) => 'b -> "a vector —> 'b

val findi (int * 'a -> bool) -> "a vector -> (int * ’a) option
val appi : (int * 'a -> unit) -> ’"a vector -> unit

val mapi : (int * 'a -> 'b) -> 'a vector -> b vector

val foldli (int * 'a * 'b => 'b) -> 'b -> "a vector -> 'b
val foldri (int * Ya * 'b -> 'b) -> '"b -> ’"a vector -> 'b
val collate : ("a * 'a -> order) -> '"a vector * ’"a vector -> order

["ty vector] is the type of one-dimensional, immutable, zero-based
constant-time-access vectors with elements of type 'ty.

Type 'ty vector admits equality if "ty does. Vectors vl and v2 are
equal if they have the same length and their elements are equal.

[maxLen] is the maximal number of elements in a vector.

[fromList xs] returns a vector whose elements are those of xs.
Raises Size if length xs > maxLen.

[tabulate(n, f)] returns a vector of length n whose elements
are £ 0, £1, ..., £ (n-1), created from left to right. Raises
Size if n<0 or n>maxLen.

[length v] returns the number of elements in v.

[sub(v, 1)] returns the i’th element of v, counting from O.
Raises Subscript if i<0 or i>=length v.

[update (v, 1, x)] creates a copy of v, sets position i to x, and
returns the new vector. In contrast to Array.update, this is not a
constant-time operation, because it must copy the entire vector.
Raises Subscript if i<0 or i>=length v.

[concat vs] returns a vector which is the concatenation from left
to right og the vectors in vs. Raises Size if the sum of the
sizes of the vectors in vs is larger than maxLen.

174 VECTOR

[find p v] applies p to each element x of v, from left to right,
until p(x) evaluates to true; returns SOME x if such an x exists,
otherwise NONE.

[exists p v] applies p to each element x of v, from left to right,
until p(x) evaluates to true; returns true if such an x exists,
otherwise false.

[all p v] applies p to each element x of v, from left to right,
until p(x) evaluates to false; returns false if such an x exists,
otherwise true.

[foldl f e v] folds function f over v from left to right. That is,
computes f(v[len-1], f(v[len-2], ..., f£(v[1], £(v[0], e)) ...)),
where len is the length of v.

[foldr £ e v] folds function f over v from right to left. That is,
computes f£(v[0], £(v[l], ..., f(v[len-2], f(v[len-1], e)) ...)),
where len is the length of v.

[app f V] applies f to v[j] for j=0,1,...,length v-1.

[map £ v] applies f to v[j] for j=0,1,...,length v-1 and returns a
new vector containing the results.

The following iterators generalize the above ones by passing also
the vector element index j to the function being iterated.

[findi p a] applies f to successive pairs (j, alj]) for 3=0,1,...,n-1,
until p(j, alj]) evaluates to true; returns SOME (j, alj]) if such
a palr exists, otherwise NONE.

[foldli f e v] folds function f over the vector from left to right.
That is, computes f(n-1, v[n-1], f(..., £(1, v[1l], £(0, v[O0], e)) ...))
where n = length v.

[foldri f e v] folds function f over the vector from right to left.
That is, computes f£(0, v[O0], £(1, v[1], ..., f(n-1, v[n-1], e) ...))
where n = length v.

[appi f v] applies f to successive pairs (j, v[j]) for j=0,1,...,n-1
where n = length v.

[mapi f v] applies f to successive pairs (j, vI[j]) for
j=0,1,...,n-1 where n = length v and returns a new vector
containing the results.

[collate cmp (xs, ys)] returns LESS, EQUAL or GREATER according as
xs precedes, equals or follows ys in the lexicographic ordering on
vectors induced by the ordering cmp on elements.

VECTORSLICE 175

Module VectorSlice

VectorSlice -- SML Basis Library

type 'a slice

val length "a slice -> int

val sub "a slice * int -> 'a

val slice "a Vector.vector * int * int option -> 'a slice
val full "a Vector.vector -> 'a slice

val subslice "a slice * int * int option -> ’a slice

val base "a slice -> ’"a Vector.vector * int * int

val vector "a slice -> "a Vector.vector

val concat "a slice list -> ’"a Vector.vector

val isEmpty "a slice -> bool

val getItem "a slice -> ('a * ’'a slice) option

val find ("a => bool) -> "a slice -> 'a option

val exists : ("a -> bool) -> "a slice -> bool

val all : ("a -> bool) -> 'a slice -> bool

val app ("a => unit) -> ’'a slice -> unit

val map ("a => 'b) -> "a slice -> 'b Vector.vector

val foldl (a * 'b => 'b) -> 'b -> "a slice > 'Db

val foldr (Ya * 'b => 'b) -> 'b -> "a slice > 'Db

val findi (int * 'a -> bool) -> ’"a slice -> (int * ’a) option
val appi (int * "a -> unit) -> 'a slice -> unit

val mapi : (int * 'a -> 'b) -> 'a slice -> 'b Vector.vector
val foldli (int * Ya * 'b -> 'b) -> 'b -> "a slice > 'Db
val foldri (int * Ya * 'b => 'b) -> 'b -> ’"a slice > 'Db
val collate : ('a * "a -> order) -> "a slice * 'a slice -> order

["ty slice] is the type of vector slices, that is, sub-vectors.
The slice (a,i,n) is valid if 0 <= 1 <= i+n <= size s,

or equivalently, 0 <= i and 0 <= n and i+n <= size s.
A valid slice sli = (a,i,n) represents the sub-vector a[i...i+n-1],
so the elements of sli are a[i], a[i+l], ..., a[i+n-1], and n is
the length of the slice. Only valid slices can be constructed by
the functions below.

[length sli] returns the number n of elements in sli = (s,i,n).

[sub (sli, k)] returns the k’th element of the slice, that is,
a(itk) where sli = (a,i,n). Raises Subscript if k<0 or k>=n.

[slice (a, 1, NONE)] creates the slice (a, i, length a-i),
consisting of the tail of a starting at 1i.

Raises Subscript if i<0 or i > Vector.length a.

Equivalent to slice (a, i1, SOME (Vector.length a - i)).

[slice (a, 1, SOME n)] creates the slice (a, i, n), consisting of
the sub-vector of a with length n starting at i. Raises Subscript
if i<0 or n<0 or i+n > Vector.length a.

slice meaning

(a, 0, NONE) the whole vector al[0..len-1]
(a, 0, SOME n) a left sub-vector (prefix) al0..n-1]

VECTORSLICE

(a, 1, NONE) a right sub-vector (suffix) ali..len-1]
(a, 1, SOME n) a general slice ali..i+n-1]

[full a] creates the slice (a, 0, Vector.length a).
Equivalent to slice(a,0,NONE)

[subslice (sli, i’, NONE)] returns the slice (a, i+i’, n-i’) when
sli = (a,i,n). Raises Subscript if i’ < 0 or i’ > n.

[subslice (sli, i’, SOME n’)] returns the slice (a, i+i’, n’) when
sli = (a,i,n). Raises Subscript if i’ < 0 or n’ < 0 or i’'+n’ > n.

[base sli] is the concrete triple (a, i, n) when sli = (a, i, n).

[vector sli] creates and returns a vector consisting of the
elements of the slice, that is, a[i..i+n-1] when sli = (a,i,n).

[concat slis] creates a vector containing the concatenation of the
slices in slis.

[isEmpty sli] returns true if the slice sli = (a,i,n) is empty,
that is, if n=0.

[getItem sli] returns SOME (x, rst) where x is the first element and
rst the remainder of sli, if sli is non-empty; otherwise returns
NONE .

[find p sli] applies p to each element x of sli, from left to
right, until p(x) evaluates to true; returns SOME x if such an x
exists, otherwise NONE.

[exists p sli] applies p to each element x of sli, from left to right,
until p(x) evaluates to true; returns true if such an x exists,
otherwise false.

[all p sli] applies p to each element x of sli, from left to right,
until p(x) evaluates to false; returns false if such an x exists,
otherwise true.

[app f sli] applies f to all elements of sli = (a,i,n), from
left to right. That is, applies f to al[j+i] for j=0,1,...,n.
[map f sli] applies f to all elements of sli = (a,i,n), from left

to right, and returns a vector of the results.

[foldl f e sli] folds function f over sli = (a,i,n) from left to right.
That is, computes f(a[i+n-1], f(a[i+n-2],..., f(al[i+l], f(alil, e))...)).

[foldr f e sli] folds function f over sli = (a,i,n) from right to left.
That is, computes f(afi], f(al[i+l],..., f(al[i+n-2], f(ali+tn-1], e))...)).

The following iterators generalize the above ones by also passing
the index into the vector a underlying the slice to the function
being iterated.

[findi p sli] applies p to the elements of sli = (a,i,n) and the
underlying vector indices, and returns the least (j, alj]) for
which p(j, alj]) evaluates to true, if any; otherwise returns NONE.
That is, evaluates p(j, alj]) for j=i,..i+n-1 until it evaluates to
true for some j, then returns SOME(j, al[j]); otherwise returns NONE.

VECTORSLICE 177

l[appi f sli] applies f to the slice sli = (a,i,n) and the
underlying vector indices. That is, applies f to successive pairs
(3, aljl) for j=i,i+l,...,i+n-1.

[mapi f sli] applies f to the slice sli = (a,i,n) and the
underlying vector indices, and returns a vector of the results.

That is, applies f to successive pairs (Jj, al[]j]) for
j=i,i+1,...,i+n-1, and returns #[f(i,ali]), ..., f(i+tn-1,al[i+n-1])].
[foldli f e sli] folds function f over the slice sli = (a,i,n) and
the underlying vector indices from left to right. That is, computes
f(i+n-1, ali+n-1], £(..., £(i+1, al[i+l], £(i, alil, e)) ...)).
[foldri f e sli] folds function f over the slice sli = (a,i,n) and
the underlying vector indices from right to left. That is, computes
f(i, afli], £(i+l, afli+l], ..., f(i+n-1, ali+n-11, e) ...)).

[collate cmp (slil, sl1i2)] returns LESS, EQUAL or GREATER according
as slil precedes, equals or follows sli2 in the lexicographic
ordering on slices induced by the ordering cmp on elements.

178 WEAK

Module Weak

Weak --- weak pointers and arrays of weak pointers
Single weak pointers

type "a weak

val weak "a -> "a weak

val set : "a weak * 'a -> unit

val get "a weak -> 'a Raises Fail
val isweak "a weak -> bool

Arrays of weak pointers

prim _EQtype 'a array

val maxLen : int

val array : int -> ’_a array Raises Size

val sub : 'a array * int -> 'a Raises Fail and Subscript

val update : ’'a array * int * 'a -> unit Raises Subscript

val isdead : 'a array * int -> bool Raises Subscript

val length "a array -> int

val app ("a => unit) -> 'a array -> unit

val foldl : (a * b => 'b) => 'b -> 'a array —> 'Db

val foldr : (a*'b->"'b) > '"b -> 'a array -> 'b

val modify : ("a -> "a) -> 'a array -> unit

val appi : (int * "a -> unit) -> 'a array * int * int option -> unit

val foldli : (int * 'a * 'b -> 'b) -> 'b -> 'a array * int * int option
-> ’b

val foldri : (int * 'a * 'b -> 'b) -> 'b -> 'a array * int * int option
-> b

val modifyi : (int * "a -> ’'a) -> 'a array * int * int option -> unit

["a weak] 1is the type of weak pointers to objects of type "a. A
weak pointer is a pointer that cannot itself keep an object alive.
Hence the object pointed to by a weak pointer may be deallocated by
the garbage collector if the object is reachable only by weak
pointers. 1In this case, subsequent accesses via the ‘get’ function
will raise Fail "Dangling weak pointer". (We raise an exception
instead of returning an option value, because access via a weak
pointer to a deallocated object is likely to be a programming
error) .

Integers, characters, words and booleans will not be deallocated by
the garbage collector and will remain reachable forever by a weak
pointer. Reals, strings, tuples and other non-nullary constructors
may be deallocated by the garbage collector. Compile-time constants,
even composite ones, will not be deallocated either.

[weak v] creates and returns a weak pointer to value v.

[get w] returns the value pointed to by weak pointer w, if the
value is still alive. Otherwise raises Fail "Dangling weak pointer".

[set (w, v)] makes the weak pointer w point to the value v.

[isweak w] returns true if the value pointed to by w is dead;

WEAK 179

returns false otherwise. If an object is reported to be dead, it
remains dead. However, an object is reported to be live just if it
has not yet been deallocated by the garbage collector. The
allocation of any new value may activate the garbage collector and
cause the object to die. Thus

if not (isweak w) then get w else "blah"
will not raise exception Fail, whereas the following might:

if not (isweak w) then ([1,2] @ [3,4]; get w) else "blah"
because evaluation of the list append may cause w to die.

The value of isweak w is the same as that of

(get w; false) handle Fail _ => true
but evaluating the latter expression may have the side effect of
keeping w alive for slightly longer, because a pointer to w is
returned by get w.

["a array] is the type of arrays of weak pointers to objects of
type "a.

A value of type ’'a Weak.weak (above) is equivalent to, but more
efficient than, a one-element ’a Weak.array. On the other hand, an
"a Weak.array is more efficient than an (’a Weak.weak) Array.array.

[array n] creates an array of n weak pointers. 1Initially, any
access to the array will raise Fail.

[sub(a, 1)] returns the object pointed to by cell i (counting from

0) of the array a, if it is live. Raises Fail "Dangling weak

pointer" if cell i has never been updated or if the object pointed

to has been deallocated by the garbage collector. Raises Subscript

if i<0 or i>=length a. To make ‘sub’ infix, use the declaration
infix 9 sub

[update(a, i, v)] updates cell i of array a to point (weakly) to
the value v. Raises Subscript if i<0 or i>=length a.

[isdead(a, 1)] returns true if the object in cell i of array a is
dead, and false otherwise. Analogous to isweak; see above.

[length a] returns the number of elements in a.

[maxLen] is the maximal number of elements in an array.

The iterators described below operate on the live elements only.
Note that an element al[k] may die in the course of folding f over
earlier elements (e.g. a[l] ... alk-1]). Thus the functions should

be used with great care.

[foldl f e a] folds function f over the live elements of a, from
left to right.

[foldr f e a] folds function f over the live elements of a, from
right to left.

[app f a] applies f to the live elements of a from left to right.

[modify f a] applies f to al[j] and updates al[j] with the result
f(aljl), for each live element a[j], from left to right.

180 WEAK

The following iterators generalize the above ones in two ways:

. the index j is also being passed to the function being iterated;
. the iterators work on a slice (subarray) of an array.

The slice (a, i, SOME n) denotes the subarray a[i..i+n-1]. That is,
a[i] is the first element of the slice, and n is the length of the
slice. Valid only if 0 <= i <= i+n <= length a.

The slice (a, i, NONE) denotes the subarray afi..length a-1]. That
is, the slice denotes the suffix of the array starting at i. Valid
only if 0 <= 1 <= length a. Equivalent to (a, i, SOME(length a - 1i)).

slice meaning

(a, 0, NONE) the whole array al0..len-1]
(a, 0, SOME n) a left subarray (prefix) al0..n-1]
(a, 1, NONE) a right subarray (suffix) ali..len-1]
(a, 1, SOME n) a general slice ali..i+n-1]

[foldli £ e (a, 1, SOME n)] folds function f over the live elements
of the subarray a[i..i+n-1] from left to right. Raises Subscript
if i<0 or n<0 or i+n > length a.

[foldli f e (a, i, NONE)] folds function f over the live elements
of the subarray ali..len-1] from left to right, where len = length
a. Raises Subscript if i<0 or i > length a.

[foldri f e (a, i, SOME n)] folds function f over the live elements
of the subarray a[i..i+n-1] from right to left. Raises Subscript
if i<0 or n<0 or i+n > length a.

[foldri f e (a, i, NONE)] folds function f over the live elements
of the subarray a[i..len-1] from right to left, where len = length
a. Raises Subscript if i<0 or i > length a.

l[appi £ (a, 1, SOME n)] applies f to successive pairs (3, al[j]) for
j=i,1i+1,...,1i+n-1, provided a[j] is live. Raises Subscript if i<0
or n<0 or i+n > length a.

[appi f (a, 1, NONE)] applies f to successive pairs (
j=i,1i+1,...,len-1, where len = length a, provided al[j
Raises Subscript if i<0 or i > length a.

j, aljl) for
] is live.

[modifyi £ (a, i, SOME n)] applies f to (j, aljl) and updates a[j]
with the result f£(j, al[j]) for j=i,i+l,...,i+n-1, provided al[j] is
live. Raises Subscript if i<0 or n<0 or i+n > length a.

[modifyi £ (a, i, NONE)] applies f to (j, alj]) and updates al
with the result f£(j, al[j]) for j=i,i+l,...,len-1, provided al[j
live. Raises Subscript if i<0 or i > length a.

il
]

is

WORD 181

Module Word

Word -- SML Basis Library

type word = word

val wordSize : int
val orb : word * word -> word
val andb : word * word -> word
val xorb : word * word -> word
val notb : word -> word
val ~ : word -> word
val << : word * word -> word
val >> : word * word -> word
val ~>> : word * word -> word
val + : word * word -> word
val - : word * word -> word
val * : word * word -> word
val div : word * word -> word
val mod : word * word -> word
val > : word * word -> bool
val < : word * word -> bool
val >= : word * word -> bool
val <= : word * word -> bool
val compare : word * word -> order
val min : word * word -> word
val max : word * word -> word
val toString : word -> string
val fromString : string -> word option
val scan ¢ StringCvt.radix
-> (char, ’'a) StringCvt.reader -> (word, ’'a) StringCvt.reader
val fmt : StringCvt.radix -> word -> string
val tolnt . word -> int
val toIntX : word -> int with sign extension
val fromInt : int -> word
val tolarge : word -> word
val toLargeX : word -> word with sign extension
val fromLarge : word -> word
val tolargeWord : word -> word
val tolargeWordX : word —-> word with sign extension

val fromLargeWord : word —-> word

val tolargelnt : word —> int
val tolargelIntX : word -> int with sign extension
val fromLargeInt : int -> word

[word] is the type of n-bit words, or n-bit unsigned integers.

[wordSize] is the value of n above. 1In Moscow ML, n=31 on 32-bit
machines and n=63 on 64-bit machines.

182 WORD

\

[orb(wl, w2)] returns the bitwise ‘or’ of wl and w2.

[andb (wl, w2)] returns the bitwise ‘and’ of wl and w2.

[xorb (wl, w2)] returns the bitwise ‘exclusive or’ or wl and w2.
[notb w] returns the bitwise negation (one’s complement) of w.
[~ w] returns the arithmetic negation (two’s complement) of w.

[<<(w, k)] returns the word resulting from shifting w left by k
bits. The bits shifted in are zero, so this is a logical shift.
Consequently, the result is O-bits when k >= wordSize.

[>>(w, k)] returns the word resulting from shifting w right by k
bits. The bits shifted in are zero, so this is a logical shift.
Consequently, the result is 0O-bits when k >= wordSize.

[~>>(w, k)] returns the word resulting from shifting w right by k
bits. The bits shifted in are replications of the left-most bit:
the ‘sign bit’, so this is an arithmetical shift. Consequently,

for k >= wordSize and wordToInt w >= 0 the result is all 0-bits, and
for k >= wordSize and wordToInt w < 0 the result is all 1l-bits.

To make <<, >>, and ~>> infix, use the declaration
infix 5 << >> ~>>

[+]

(-]

[*]

[div]

[mod] represent unsigned integer addition, subtraction,
multiplication, division, and remainder, modulus 2 raised to the n’th
power, where n=wordSize. The operations (i div j) and (i mod 3J)
raise Div when j=0. Otherwise no exceptions are raised.

] compare words as unsigned integers.

[compare (wl, w2)] returns LESS, EQUAL, or GREATER, according
as wl is less than, equal to, or greater than w2 (as unsigned integers).

[min(wl, w2)] returns the smaller of wl and w2 (as unsigned integers).
[max (wl, w2)] returns the larger of wl and w2 (as unsigned integers).

[fmt radix w] returns a string representing w, in the radix (base)
specified by radix.

radix description output format
BIN unsigned binary (base 2) [01]+

OCT unsigned octal (base 8) [0-7]+

DEC unsigned decimal (base 10) [0-9]+

HEX unsigned hexadecimal (base 16) [0-9A-F]+

[toString w] returns a string representing w in unsigned
hexadecimal format. Equivalent to (fmt HEX w).

WORD 183

[fromString s] returns SOME (w) if a hexadecimal unsigned numeral

can be scanned from a prefix of string s, ignoring any initial

whitespace; returns NONE otherwise. Raises Overflow if the scanned

number cannot be represented as a word. An unsigned hexadecimal

numeral must have form, after possible initial whitespace:
[0-9a-fA-F]+

[scan radix getc charsrc] attempts to scan an unsigned numeral from
the character source charsrc, using the accessor getc, and ignoring
any initial whitespace. The radix argument specifies the base of
the numeral (BIN, OCT, DEC, HEX). If successful, it returns

SOME (w, rest) where w is the value of the numeral scanned, and rest
is the unused part of the character source. Raises Overflow if the
scanned number cannot be represented as a word. A numeral must
have form, after possible initial whitespace:

radix input format
BIN (Ow) 2 [0-11+
OCT (Ow) 2[0-7]+
DEC (Ow) 2[0-9]+
HEX (Owx | 0wX | 0x|0X) ?[0-9a-fA-F]+

[toInt w] returns the (non-negative) default size int represented
by bit-pattern w. Raises Overflow in case w is not representable
as an integer.

[toIntX w] returns the (signed) default size int represented by
twos’s complement bit-pattern w.

[fromInt 1] returns the word (bit-pattern) representing integer 1i.

[toLargeInt w] returns the (non-negative) largest size int
represented by bit-pattern w. Raises Overflow in case w is not
representable as an integer.

[toLargeIntX w] returns the (signed) largest size int represented
by two’s complement bit-pattern w.

[fromLargeInt i] returns the word representing integer 1i.

[toLarge w] returns w.
[toLargeX w] returns w.
[fromLarge w] returns w.

[toLargeWord w] returns w (deprecated).
[toLargeWordX w] returns w (deprecated).
[fromLargeWord w] returns w (deprecated).

184

Module Word$

word
word
word

d —>
d —>
d —>

word
word
word
word
word

bool
bool
bool
bool
order

word
word

StringCvt.reader -> (word, ’a)

word
word
word

StringCvt.radix -> word -> string

.word
.word

with sign extension

with sign extension

with sign extension

with sign extension

Word8 -- SML Basis Library
type word = word8
val wordSize int
val orb : word * word —->
val andb : word * word —->
val xorb : word * word —>
val notb : word -> word
val ~ : word -> word
val << : word * Word.wor
val >> : word * Word.wor
val ~>> : word * Word.wor
val + : word * word —->
val - : word * word —->
val * : word * word —->
val div : word * word —>
val mod : word * word ->
val > : word * word ->
val < : word * word —>
val >= : word * word —>
val <= : word * word —>
val compare : word * word —>
val min : word * word —->
val max : word * word —->
val toString : word -> string
val fromString : string -> word option
val scan : StringCvt.radix
-> (char, ’a)
val fmt :
val tolInt . word -> int
val tolIntX : word -> int
val fromInt int -> word
val tolargelnt : word -> int
val tolargeIntX : word -> int
val fromLargelnt int -> word
val tolarge : word -> Word.word
val tolLargeX : word —-> Word.word
val fromLarge : Word.word —-> word
val tolLargeWord : word -> Word
val tolargeWordX : word -> Word
val fromLargeWord : Word.word ->

word

WORDS

StringCvt.reader

[word] 1is the
the range 0..2

[wordSize] equ

type of 8-bit words, or 8-bit unsigned integers in

55.

als 8.

WORDS$ 185

\

[orb(wl, w2)] returns the bitwise ‘or’ of wl and w2.

[andb (wl, w2)] returns the bitwise ‘and’ of wl and w2.

[xorb(wl, w2)] returns the bitwise ‘exclusive or’ or wl and w2.
[notb w] returns the bitwise negation (one’s complement) of w.
[~ w] returns the arithmetic negation (two’s complement) of w.

[<<(w, k)] returns the word resulting from shifting w left by k
bits. The bits shifted in are zero, so this is a logical shift.
Consequently, the result is O-bits when k >= wordSize.

[>>(w, k)] returns the word resulting from shifting w right by k
bits. The bits shifted in are zero, so this is a logical shift.
Consequently, the result is O-bits when k >= wordSize.

[~>>(w, k)] returns the word resulting from shifting w right by k
bits. The bits shifted in are replications of the left-most bit:
the ‘sign bit’, so this is an arithmetical shift. Consequently,

for k >= wordSize and wordToInt w >= 0 the result is all 0-bits, and
for k >= wordSize and wordToInt w < 0 the result is all 1l-bits.

To make <<, >>, and ~>> infix, use the declaration:
infix 5 << >> ~>>

(+]

(-]

[*]

[div]

[mod] represent unsigned integer addition, subtraction,
multiplication, division, and remainder, modulus 256. The
operations (i div j) and (i mod j) raise Div when j = 0. Otherwise
no exceptions are raised.

] compare words as unsigned integers.

[compare (wl, w2)] returns LESS, EQUAL, or GREATER, according
as wl is less than, equal to, or greater than w2 (as unsigned integers).

[min(wl, w2)] returns the smaller of wl and w2 (as unsigned integers).
[max (wl, w2)] returns the larger of wl and w2 (as unsigned integers).

[fmt radix w] returns a string representing w, in the radix (base)
specified by radix.

radix description output format
BIN unsigned binary (base 2) [01]+

OCT unsigned octal (base 8) [0-7]+

DEC unsigned decimal (base 10) [0-9]+

HEX unsigned hexadecimal (base 16) [0-9A-F]+

[toString w] returns a string representing w in unsigned
hexadecimal format. Equivalent to (fmt HEX w).

186 WORDS

[fromString s] returns SOME (w) if a hexadecimal unsigned numeral

can be scanned from a prefix of string s, ignoring any initial

whitespace; returns NONE otherwise. Raises Overflow if the scanned

number cannot be represented as a word. An unsigned hexadecimal

numeral must have form, after possible initial whitespace:
[0-%9a-fA-F]+

[scan radix {getc} charsrc] attempts to scan an unsigned numeral
from the character source charsrc, using the accessor getc, and
ignoring any initial whitespace. The radix argument specifies the
base of the numeral (BIN, OCT, DEC, HEX). If successful, it
returns SOME (w, rest) where w is the value of the numeral scanned,
and rest is the unused part of the character source. Raises
Overflow if the scanned number cannot be represented as a word. A
numeral must have form, after possible initial whitespace:

radix input format
BIN (Ow) 2 [0-11+
OCT (Ow) 2[0-7]+
DEC (Ow) 2[0-9]+
HEX (Owx | OwX | 0x]0X) ?[0-9a-fA-F]+

[toInt w] returns the integer in the range 0..255 represented by w.

[toIntX w] returns the signed integer (in the range ~128..127)
represented by bit-pattern w.

[fromInt 1] returns the word holding the 8 least significant bits of 1.
[toLargeInt w] returns the integer in the range 0..255 represented by w.

[toLargeIntX w] returns the signed integer (in the range ~128..127)
represented by bit-pattern w.

[fromLargeInt i] returns the word holding the 8 least significant bits of i.
[toLarge w] returns the Word.word value corresponding to w.

[toLargeX w] returns the Word.word value corresponding to w,

with sign extension. That is, the 8 least significant bits of the

result are those of w, and the remaining bits are all equal to the

most significant bit of w: its ‘sign bit’.

[fromLarge w] returns w modulo 256.

[toLargeWord w]

[toLargeWordX w]
[fromLargeWord w] synonyms for tolarge, toLargeX and fromLarge, (deprecated)

WORDSARRAY

Module Word8Array

Word8Array -- SML Basis Library

eqgtype array
type elem

val maxLen

val array
val tabulate
val fromList

val length
val sub

val update
val vector

val copy
val copyVec

val find
val exists
val all

val app
val foldl
val foldr
val modify

val findi
val appi
val foldli
val foldri
val modifyi

val collate

int

= Word8.word
type vector = Word8Vector.vector

int * elem -> array

int *

1 array

array
array
array

{src:
{src:

(elem
(elem
(elem

X% o X

: (int -> elem)
: elem list -> array

-> int

* int -> elem
* int * elem -> unit

-> vector

array, dst:
vector, dst:

-> bool) —->
-> bool) ->
-> bool) ->

-> unit) ->
* b => 'b)
* I'h —> Ib)
-> elem) ->

-> array

array, di: int} -> unit
array, di: int} -> unit

array
array
array

array
> !b
-> ’b
array

elem -> bool) —>
elem -> unit) —->
elem * 'b -> 'b)
elem * b -> 'Db)
elem -> elem) —->

(elem * elem -> order)

-> elem option

-> bool
-> bool

-> unit
-> array
-> array
-> unit

array ->
array ->
-> b >
-> b >
array —->

-> Db
->'b

(int * elem) option
unit

array —> 'b

array > 'b

unit

-> array * array -> order

187

[array] is the type of one-dimensional, mutable, zero-based

constant-time-access arrays with elements of type Word8.word, that

is, 8-bit words.

Arrays al and a2 are equal if both were created
by the same call to a primitive (array0, array, tabulate, fromList).

All operations are as for Array.array.

188 WORDSARRAYSLICE

Module Word8ArraySlice

Word8ArraySlice -- SML Basis Library

type elem = Word8.word

type array = Word8Array.array

type vector = Word8Vector.vector

type vector_slice = Word8VectorSlice.slice

type slice

val length : slice —> int

val sub : slice * int -> elem

val update : slice * int * elem -> unit

val slice : array * int * int option -> slice

val full : array -> slice

val subslice : slice * int * int option -> slice

val base : slice -> array * int * int

val vector : slice -> vector

val copy : {src: slice, dst: array, di: int} -> unit
val copyVec : {src: vector_slice, dst: array, di: int} -> unit
val isEmpty : slice -> bool

val getItem : slice -> (elem * slice) option

val find : (elem -> bool) -> slice -> elem option
val exists : (elem -> bool) -> slice -> bool

val all ¢ (elem -> bool) -> slice -> bool

val app elem -> unit) -> slice -> unit

o -
val foldl : (elem * 'b -> 'b) -> 'b -> slice -> 'Db
N
(

val foldr elem * 'b -> 'b) -> 'b -> slice -> Db

val modify elem -> elem) -> slice -> unit

val findi (int * elem -> bool) -> slice -> (int * elem) option
val appi : (int * elem -> unit) -> slice -> unit

val foldli : (int * elem * 'b -> 'b) > 'b -> slice > 'b

val foldri : (int * elem * 'b -> 'b) -> 'b -> slice -> 'b

val modifyi (int * elem -> elem) -> slice -> unit

val collate : (elem * elem -> order) -> slice * slice -> order

[slice] is the type of Word8Array slices, that is, sub-arrays of
Word8Array.array values.
The slice (a,i,n) is valid if 0 <= i <= i+n <= size s,

or equivalently, 0 <= 1 and 0 <= n and i+n <= size s.
A valid slice sli = (a,i,n) represents the sub-array al[i...i+n-1],
so the elements of sli are a[i], a[i+l], ..., a[i+n-1], and n is
the length of the slice. Only valid slices can be constructed by
the functions below.

All operations are as for ArraySlice.slice.

WORDSVECTOR 189

Module Word8Vector

Word8Vector -- SML Basis Library

eqtype vector
type elem = Word8.word

val maxLen : int

val fromList : elem list -> vector
val tabulate : int * (int -> elem) -> vector

val length : vector -> int

val sub : vector * int -> elem

val update : vector * int * elem -> vector

val concat : vector list -> vector

val find : (elem -> bool) -> vector -> elem option
val exists : (elem -> bool) -> vector -> bool

val all : (elem -> bool) -> vector -> bool

val app elem -> unit) -> vector -> unit

val map elem -> elem) -> vector -> vector

(

¢
val foldl : (elem * 'b -> 'b) -> 'b -> vector -> 'b
val foldr : (elem * 'b -> 'b) -> 'b -> vector -> 'b

val findi (* elem -> bool) -> vector -> (int * elem) option
val appi o * elem -> unit) -> vector -> unit

val mapi ¢ (int * elem -> elem) —-> vector —-> vector

val foldli (* elem * 'b -> 'b) -> 'b -> vector -> 'b

val foldri (* elem * 'b -> 'b) -> 'b -> vector -> 'b

val collate : (elem * elem -> order) -> vector * vector -> order

[vector] is the type of one-dimensional, immutable, zero-based
constant-time-access vectors with elements of type Word8.word, that
is, 8-bit words. Type vector admits equality, and vectors vl and
v2 are equal if they have the same length and their elements are
equal.

All operations are as for Vector.vector.

190 WORDSVECTORSLICE

Module Word8VectorSlice

Word8VectorSlice -- SML Basis Library

type elem = Word8.word
type vector = Word8Vector.vector

type slice

val length : slice —> int

val sub : slice * int -> elem

val slice : vector * int * int option -> slice
val full . vector -> slice

val subslice : slice * int * int option -> slice
val base : slice -> vector * int * int

val vector : slice -> vector

val concat : slice list -> vector

val isEmpty : slice -> bool

val getItem : slice —> (elem * slice) option

val find : (elem -> bool) -> slice -> elem option
val exists : (elem -> bool) -> slice -> bool
val all ¢ (elem —> bool) —-> slice -> bool
val app elem -> unit) -> slice -> unit

N

val map : (elem -> elem) -> slice -> vector
N
(

val foldl elem * 'b -> 'b) -> 'b -> slice -> 'b

val foldr elem * 'b -> 'b) -> 'b -> slice -> 'b

val findi (int * elem -> bool) -> slice -> (int * elem) option
val appi : (int * elem -> unit) -> slice -> unit

val mapi ¢ (int * elem -> elem) -> slice -> vector

val foldli ¢ (int * elem * 'b -> 'b) -> 'b -> slice -> 'Db

val foldri (int * elem * 'b -> 'b) -> 'b -> slice -> 'Db

val collate : (elem * elem -> order) -> slice * slice -> order

[slice] 1s the type of Word8Vector slices, that is, sub-vectors of
Word8Vector.vector values.
The slice (a,i,n) is valid if 0 <= i <= i+n <= size s,

or equivalently, 0 <= i and 0 <= n and i+n <= size s.
A valid slice sli = (a,i,n) represents the sub-vector a[i...i+n-1],
so the elements of sli are a[i], a[i+l], ..., al[i+n-1], and n is
the length of the slice. Only valid slices can be constructed by
these functions.

All operations are as for VectorSlice.slice.

Index

$$

ow

o\
=

o\
oe

o\e
oe

o\
[Re)

&&

value (General), 52, 55
value (Real), 132, 133
constructor (Msp), 94
constructor (Msp), 94
value (Msp), 92, 95
value (Msp), 92, 95
value (Msp), 92, 95
value (Msp), 92, 95
value (Msp), 92, 95
constructor (Msp), 94

value (General), 53, 56
value (Int), 61

value (IntInf), 64
value (Real), 132

value (Word), 181, 182
value (Word8), 184, 185

value (General), 53, 56
value (Int), 61

value (IntInf), 64
value (Real), 132
value (Time), 168, 169
value (Word), 181, 182
value (Word8), 184, 185

value (General), 53, 56
value (Int), 61

value (IntInf), 64
value (Real), 132
value (Time), 168, 169
value (Word), 181, 182
value (Words), 184, 185

value (General), 53, 56
value (Real), 132

<<

<>

191

value (General), 52, 55

value (Char), 27, 29
value (General), 53, 56
value (Int), 61, 62

value (IntInf), 64

value (Real), 132

value (String), 154, 156
value (Time), 168, 169
value (Word), 181, 182
value (Words8), 184, 185

value (Word), 181, 182
value (Word8), 184, 185

value (Char), 27, 29
value (General), 53, 56
value (Int), 61, 62

value (IntInf), 64

value (Real), 132

value (String), 154, 156
value (Time), 168, 169
value (Word), 181, 182
value (Word8), 184, 185

value (General), 53, 55
value (General), 53, 55
value (Real), 132, 133

value (Char), 27, 29
value (General), 53, 56
value (Int), 61, 62

value (IntInf), 64
value (Real), 132

value (String), 154, 156
value (Time), 168, 169
value (Word), 181, 182
value (Word8), 184, 185

value (Char), 27, 29
value (General), 53, 56
value (Int), 61, 62
value (IntInf), 64

192

value (Real), 132

value (String), 154, 156
value (Time), 168, 169
value (Word), 181, 182
value (Word8), 184, 185

>>
value (Word), 181, 182
value (Word8), 184, 185
?_
value (Real), 132, 133
@

value (List), 71

value (General), 53, 55
value (String), 154

value (General), 53, 56

value (Int), 61

value (IntInf), 64

value (Real), 132

value (Word), 181, 182

value (Word8), 184, 185
~>>

value (Word), 181, 182

value (Word8), 184, 185

A_EXEC

constructor (FileSys), 43
A_READ

constructor (FileSys), 43
A_WRITE

constructor (FileSys), 43
abrt

value (Signal), 143
Abs

exception (SML90), 142
abs

value (General), 53, 56

value (Int), 61

value (IntInf), 64

value (Real), 132
accept

value (Socket), 145, 147
access

value (FileSys), 42, 43
access_mode

type (FileSys), 42,43
acos

value (Math), 79

active

add

add’

type (Socket), 145, 146

value (Binaryset), 19
value (Gdbm), 45, 46
value (Hashset), 57
value (Intset), 67
value (Polygdbm), 118
value (Rbset), 129, 130
value (Splayset), 152

value (Rbset), 129

add_break

value (PP), 109, 110

add_newline

value (PP), 109, 110

add_string

value (PP), 109, 110

addChar

value (Buffer), 22

addList

value (Binaryset), 19
value (Hashset), 57
value (Intset), 67
value (Rbset), 129, 130
value (Splayset), 152

address

value (Msp), 93, 96

addString

value (Buffer), 22

addSubString

value (Buffer), 22

ahref

value (Msp), 93, 96

ahrefa

all

value (Msp), 93, 96

value (Array), 3, 4

value (ArraySlice), 10, 11
value (CharArray), 30

value (CharArraySlice), 31
value (CharVector), 32

value (CharVectorSlice), 33
value (Hashset), 57

value (List), 71,72

value (ListPair), 74

value (Substring), 159, 160
value (Vector), 173, 174
value (VectorSlice), 175, 176

INDEX

INDEX

value (Word8Array), 187
value (Word8ArraySlice), 188
value (Word8Vector), 189
value (Word8VectorSlice), 190
allCookies
value (Mosmlcookie), 91
allEq
value (ListPair), 74, 75
AlreadyThere
exception (Gdbm), 45
exception (Polygdbm), 118
alrm
value (Signal), 143
aname
value (Msp), 93, 96
andb
value (Word), 181, 182
value (Word8), 184, 185
app
value (Array), 3, 4
value (Array?2), 6, 7
value (ArraySlice), 10, 11
value (Binarymap), 17
value (Binaryset), 19, 20
value (CharArray), 30
value (CharArraySlice), 31
value (CharVector), 32
value (CharVectorSlice), 33
value (Gdbm), 45, 46
value (Hashset), 57, 58
value (Intmap), 65
value (Intset), 67, 68
value (List), 71,72
value (ListPair), 74
value (NJ93), 104
value (Option), 108
value (Polygdbm), 118, 119
value (Rbset), 129, 130
value (Redblackmap), 135
value (Regex), 137, 140
value (Splaymap), 150
value (Splayset), 152, 153
value (Substring), 159, 162
value (Vector), 173, 174
value (VectorSlice), 175, 176
value (Weak), 178, 179
value (Word8Array), 187
value (Word8ArraySlice), 188
value (Word8Vector), 189

193

value (Word8VectorSlice), 190
appl
value (Callback), 24, 26
value (Dynlib), 39, 40
app2
value (Callback), 24, 26
value (Dynlib), 39, 40
app3
value (Callback), 24, 26
value (Dynlib), 39, 40
app4
value (Callback), 24, 26
value (Dynlib), 39, 41
appS
value (Callback), 24, 26
value (Dynlib), 39, 41
appEq
value (ListPair), 74, 75
appi
value (Array), 3, 4
value (Array?2), 6, 8
value (ArraySlice), 10, 12
value (CharArray), 30
value (CharArraySlice), 31
value (CharVector), 32
value (CharVectorSlice), 33
value (Vector), 173, 174
value (VectorSlice), 175, 177
value (Weak), 178, 180
value (Word8Array), 187
value (Word8ArraySlice), 188
value (Word8Vector), 189
value (Word8VectorSlice), 190
AppleScript (structure), 2
AppleScriptErr
exception (AppleScript), 2
apply
value (Polyhash), 120, 121
applyto
value (Mysql), 100, 102
value (Postgres), 123, 126
arctan
value (NJ93), 104
value (SML90), 142
area
value (Msp), 93, 97
arguments
value (CommandLine), 34
argv

194

value (Mosml), 85
Array (structure), 3-5
array
type (Array), 3
type (Array?2), 6
type (CharArray), 30
type (CharArraySlice), 31
type (Dynarray), 38
type (Weak), 178, 179
type (Word8Array), 187
type (Word8ArraySlice), 188
value (Array), 3
value (Array2), 6,7
value (CharArray), 30
value (Dynarray), 38
value (Weak), 178, 179
value (Word8Array), 187
Array?2 (structure), 6-9
ArraySlice (structure), 10-12
Arraysort (structure), 13
as_compile
value (AppleScript), 2
as_dispose
value (AppleScript), 2
as_run_script
value (AppleScript), 2
as_run_text
value (AppleScript), 2
asin
value (Math), 79
atan
value (Math), 79
atan2
value (Math), 79
atExit
value (Process), 127

backtrack
value (Lexing), 69

base
value (ArraySlice), 10, 11
value (CharArraySlice), 31
value (CharVectorSlice), 33
value (Path), 114, 117
value (Substring), 159, 160
value (VectorSlice), 175, 176
value (Word8ArraySlice), 188
value (Word8VectorSlice), 190

before

value (General), 52, 55
begin_block

value (PP), 109, 110
Binarymap (structure), 17-18
Binaryset (structure), 19-20
Bind

exception (General), 52, 54
bind

value (Socket), 145, 147
binInstreamOf

value (Unix), 171, 172
BinIO (structure), 14-16

binOutstreamOf

value (Unix), 171, 172
blockquote

value (Msp), 93, 96
blockquotea

value (Msp), 93, 96
body

value (Msp), 92, 95
bodya

value (Msp), 92, 95
Bool (structure), 21
bool

type (Bool), 21

type (General), 52, 53
bound

value (Dynarray), 38
br

value (Msp), 93, 96
bra

value (Msp), 93, 96
break_style

type (PP), 109
browser

value (Help), 59
bucketSizes

value (Polyhash), 120, 121
buf

type (Buffer), 22

type (Socket), 145, 147
buff_input

value (Nonstdio), 106
buff_output

value (Nonstdio), 106
Buffer (structure), 22
bus

value (Signal), 143
Byte (structure), 23

INDEX 195

bytesToString cgi_http_host
value (Byte), 23 value (Mosmlcgi), 87, 90
byteToChar cgi_http_proxy_connection
value (Byte), 23 value (Mosmlcgi), 87, 90

cgi_http_referer

Callback (structure), 24-26 value (Mosmlcgi), 87, 89

can_input cgi_http_user_agent
value (NJ93), 105 value (Mosmlcgi), 87, 89
caption cgi_is_subreq
value (Msp), 93, 97 value (Mosmlcgi), 88, 90
captiona cgi_part
value (Msp), 93, 97 value (Mosmlcgi), 87, 88
ceil cgi_partnames
value (General), 53, 55 value (Mosmlcgi), 87, 88
value (Real), 132, 133 cgi_parts
ceiling value (Mosmlcgi), 87, 88
value (NJ93), 104 cgi_path_info
center value (Mosmlcgi), 87, 89
value (Msp), 93, 96 cgi_path_translated
cflag value (Mosmlcgi), 87, 89
type (Regex), 137, 138 cgi_query_string
cgi_annotation_server value (Mosmlcgi), 87, 89
value (Mosmlcgi), 87, 89 cgi_remote_addr
cgi_api_version value (Mosmlcgi), 87, 89

value (Mosmlcgi), 87, 90

cgi_auth_type

value (Mosmlcgi), 87

cgi_content_length

value (Mosmlcgi), 87, 89

cgi_content_type

value (Mosmlcgi), 87

cgi_document_root

value (Mosmlcgi), 87, 90

cgi_field integer

value (Mosmlcgi), 87, 88

cgi_field_string

value (Mosmlcgi), 87, 88

cgi_field_strings

value (Mosmlcgi), 87, 88

cgi_fieldnames

value (Mosmlcgi), 87, 88

cgi_gateway_interface

value (Mosmlcgi), 87, 89

cgi_http_accept

value (Mosmlcgi), 87, 89

cgi_http_cookie

value (Mosmlcgi), 87, 90

cgi_http_forwarded

value (Mosmlcgi), 87, 90

cgi_remote_host

value (Mosmlcgi), 87, 89

cgi_remote_ident

value (Mosmlcgi), 87, 89

cgi_remote_user

value (Mosmlcgi), 87, 89

cgi_request_filename

value (Mosmlcgi), 87, 90

cgi_request_method

value (Mosmlcgi), 87, 89

cgi_request_uri

value (Mosmlcgi), 87, 90

cgi_script_filename

value (Mosmlcgi), 87, 90

cgi_script_name

value (Mosmlcgi), 87, 89

cgi_server_admin

value (Mosmlcgi), 87, 90

cgi_server_name

value (Mosmlcgi), 87, 89

cgi_server_port

value (Mosmlcgi), 87, 89

cgi_server_protocol

value (Mosmlcgi), 87, 89

cgi_server_software

196

value (Mosmlcgi), 87, 89
cgi_the_request

value (Mosmlcgi), 87, 90
Char (structure), 27-29
char

type (Char), 27

type (General), 52, 53

value (Gdimage), 49, 51
CharArray (structure), 30
CharArraySlice (structure), 31
charsize

value (Gdimage), 49, 51
charToByte

value (Byte), 23
charUp

value (Gdimage), 49, 51
CharVector (structure), 32
CharVectorSlice (structure), 33
chDir

value (FileSys), 42
checkCPUTimer

value (Timer), 170
checkCPUTimes

value (Timer), 170
checkGCTime

value (Timer), 170
checkRealTimer

value (Timer), 170
chld

value (Signal), 143, 144
Chr

exception (General), 52
chr

value (Char), 27

value (NJ93), 104

value (SML90), 142
clear

value (Buffer), 22
clear_ppstream

value (PP), 109, 110
clearParser

value (Parsing), 112, 113
close

value (Socket), 145, 147
close_in

value (NJ93), 105

value (SML90), 142
close_out

value (NJ93), 105

INDEX

value (SML90), 142
closebase

value (Mysql), 99, 101

value (Postgres), 122, 124
Closed

exception (Dynlib), 39

exception (Gdbm), 45

exception (Mysqgl), 99

exception (Polygdbm), 118

exception (Postgres), 122
closeDir

value (FileSys), 42
closeln

value (BinIO), 14

value (TextI0), 164, 165
closeOut

value (BinIO), 14, 15

value (TextIO0), 164, 166
cmdtuples

value (Mysql), 99, 101

value (Postgres), 122, 124
collate

value (Array), 3, 4

value (ArraySlice), 10, 12

value (CharArray), 30

value (CharArraySlice), 31

value (CharVector), 32

value (CharVectorSlice), 33

value (List), 71,72

value (String), 154, 156

value (Substring), 159, 161

value (Vector), 173, 174

value (VectorSlice), 175, 177

value (Word8Array), 187

value (Word8ArraySlice), 188

value (Word8Vector), 189

value (Word8VectorSlice), 190
ColMajor

constructor (Array?2), 6
color

constructor (Gdimage), 49, 50

type (Gdimage), 48, 49

value (Gdimage), 48, 50
column

value (Array?2), 6, 7
CommandLine (structure), 34
comment

value (Msp), 92, 95
compare

INDEX

value (Char), 27, 29

value (Date), 35, 36

value (FileSys), 42, 44

value (Int), 61, 62

value (IntInf), 64

value (Rbset), 129, 131

value (Real), 132, 133

value (Socket), 145, 149

value (String), 154, 156

value (Substring), 159, 161

value (Time), 168, 169

value (Word), 181, 182

value (Word8), 184, 185
compile

value (Meta), 81, 82
compileStructure

value (Meta), 81-83
compileToplevel

value (Meta), 81, 83
compose

value (Option), 108
composePartial

value (Option), 108
concat

value (CharVector), 32

value (CharVectorSlice), 33

value (List), 71,72

value (Path), 114, 116

value (String), 154, 155

value (Substring), 159, 160

value (Vector), 173

value (VectorSlice), 175, 176

value (Word8Vector), 189

value (Word8VectorSlice), 190
concatWith

value (String), 154, 155

value (Substring), 159, 160
connect

value (Socket), 145, 147
conservative

value (Meta), 81, 82
CONSISTENT

constructor (PP), 109
cont

value (Signal), 143, 144
contains

value (Char), 27, 28
contents

value (Buffer), 22

197

cookiedata

type (Mosmlcookie), 91
CookieError

exception (Mosmlcookie), 91
copy

value (Array), 3, 4

value (Array?2), 6, 8

value (ArraySlice), 10, 11

value (CharArray), 30

value (CharArraySlice), 31

value (Gdimage), 48, 50

value (Hashset), 57

value (Polyhash), 120, 121

value (Word8Array), 187

value (Word8ArraySlice), 188
copyResize

value (Gdimage), 49, 51
copytablefrom

value (Mysql), 100, 103

value (Postgres), 123, 126
copytableto

value (Mysqgl), 100, 103

value (Postgres), 123, 126
copyVec

value (Array), 3, 4

value (ArraySlice), 10, 11

value (CharArray), 30

value (CharArraySlice), 31

value (Word8Array), 187

value (Word8ArraySlice), 188
cos

value (Math), 79

value (NJ93), 104

value (SML90), 142
cosh

value (Math), 79, 80
cptr

type (Callback), 24, 26
cpu_timer

type (Timer), 170
createlexer

value (Lexing), 69
createlexerString

value (Lexing), 69
cs

type (StringCvt), 157

type (TextI0), 164
currentArc

value (Path), 114, 115

198

Date
exception (Date), 35
Date (structure), 35-37
date
type (Date), 35
value (Date), 35
datum
type (Gdbm), 45
day
value (Date), 35, 36
db
value (Mysql), 99, 101
value (Postgres), 122, 124
dbconn
type (Mysql), 99, 100
type (Postgres), 122, 124
dbresult
type (Mysql), 99, 100
type (Postgres), 122, 124
dbresultstatus
type (Mysql), 99
type (Postgres), 122
dd
value (Msp), 93, 97
dec
value (NJ93), 104
default
value (Dynarray), 38
defaultBrowser
value (Help), 59, 60
delay
value (Susp), 163
delete
value (Binaryset), 19, 20
value (Hashset), 57
value (Intset), 67
value (Rbset), 129, 130
value (Splayset), 152, 153
deleteCookie
value (Mosmlcookie), 91
depth
value (Rbset), 129
dest_ppstream
value (PP), 109, 110
dgram
type (Socket), 145, 146
dict
type (Binarymap), 17
type (Redblackmap), 135

type (Splaymap), 150
difference

value (Binaryset), 19, 20

value (Intset), 67

value (Rbset), 129, 130

value (Splayset), 152, 153
dimensions

value (Array2), 6,7
dir

value (Path), 114, 117
dirstream

type (FileSys), 42
displayLines

value (Help), 59, 60
Div

exception (General), 52

exception (Real), 132

value (General), 54
div

value (General), 53, 56

value (Int), 61

value (IntInf), 64

value (Word), 181, 182

value (Word8), 184, 185
divi

value (Msp), 93, 96
divia

value (Msp), 93, 96
divMod

value (IntInf), 64
dl

value (Msp), 93, 97
dla

value (Msp), 93, 97
dlclose

value (Dynlib), 39, 40
dlHandle

type (Dynlib), 39
dlopen

value (Dynlib), 39, 40
dlsym

value (Dynlib), 39, 40
Domain

exception (General), 52
doubleVec

value (Mosml), 85
drawArc

value (Gdimage), 48, 50
drawLine

INDEX

value (Gdimage), 48, 50
drawPixel

value (Gdimage), 48, 50
drawPolygon

value (Gdimage), 48, 50
drawRect

value (Gdimage), 48, 50
drop

value (List), 71,72
dropl

value (StringCvt), 157

value (Substring), 159, 161
dropr

value (Substring), 159, 161
dt

value (Msp), 93, 97
dummyAction

value (Lexing), 69
Dynarray (structure), 38
Dynlib (structure), 39—41
dyntype

type (Mysqgl), 100

type (Postgres), 123
dynval

type (Mysqgl), 100

type (Postgres), 123
dynval2s

value (Mysqgl), 100, 102

value (Postgres), 123, 126

value (Math), 79
eflag
type (Regex), 137, 139
elem
type (BinIO), 14
type (CharArray), 30
type (CharArraySlice), 31
type (CharVector), 32
type (CharVectorSlice), 33
type (TextIO), 164, 165
type (Word8Array), 187
type (Word8ArraySlice), 188
type (Word8Vector), 189
type (Word8VectorSlice), 190
em
value (Msp), 93, 96
Empty
constructor (Msp), 94

exception (List), 71
empty

value (Binaryset), 19

value (Hashset), 57

value (Intmap), 65

value (Intset), 67

value (Rbset), 129, 130

value (Splayset), 152
end_block

value (PP), 109, 110
end_of_stream

value (NJ93), 105

value (SML90), 142
endOfStream

value (BinIO), 14, 15

value (TextI0), 164, 165
eq

value (IntInf), 64
eqclasses

value (Listsort), 76
equal

value (Binaryset), 19

value (Hashset), 57, 58

value (Intset), 67

value (Rbset), 129, 130

value (Splayset), 152
errLocation

value (Location), 77
errMsg

value (Location), 77
errormessage

value (Mysqgl), 99, 101

value (Postgres), 122, 124
errorMsg

value (0S), 107
errPrompt

value (Location), 77
execute

value (Mysqgl), 99, 101

value (Postgres), 122, 124

value (Unix), 171
executelnEnv

value (Unix), 171
exists

value (Array), 3, 4

value (ArraySlice), 10, 11

value (CharArray), 30

value (CharArraySlice), 31

value (CharVector), 32

199

200

value (CharVectorSlice), 33

value (Hashset), 57

value (List), 71,72

value (ListPair), 74, 75

value (Vector), 173, 174

value (VectorSlice), 175, 176

value (Word8Array), 187

value (Word8ArraySlice), 188

value (Word8Vector), 189

value (Word8VectorSlice), 190
exit

value (Process), 127
exn

type (General), 52, 53
exnMessage

value (General), 53, 55
exnName

value (General), 52, 55
exp

value (Math), 79

value (NJ93), 104

value (SML90), 142
explode

value (NJ93), 104

value (SML90), 142

value (String), 154, 155

value (Substring), 159, 161
ext

value (Path), 114, 117
Extended

constructor (Regex), 138
extract

value (String), 154

value (Substring), 159, 160

Fail

exception (General), 52
failure

value (Process), 127
fast_really_input

value (Nonstdio), 106
fastwrite

value (Gdbm), 45, 46

value (Polygdbm), 118, 119
fields

value (Regex), 137, 140

value (String), 154, 155

value (Substring), 159, 162
file

INDEX

value (Path), 114, 117
file exists

value (Nonstdio), 106
file_id

type (FileSys), 42,44
fileAddr

value (Socket), 145, 146
fileDgram

value (Socket), 145, 147
fileld

value (FileSys), 42, 44
fileSize

value (FileSys), 42, 44
fileStream

value (Socket), 145, 146
FileSys (structure), 42-44
fill

value (Gdimage), 48, 50
fillBorder

value (Gdimage), 48, 50
fillPolygon

value (Gdimage), 48, 50
fillRect

value (Gdimage), 48, 50
filter

value (List), 71,72

value (Option), 108

value (Polyhash), 120, 121
find

value (Array), 3, 4

value (ArraySlice), 10, 11

value (Binarymap), 17

value (Binaryset), 19, 20

value (CharArray), 30

value (CharArraySlice), 31

value (CharVector), 32

value (CharVectorSlice), 33

value (Gdbm), 45, 46

value (Hashset), 57, 58

value (Intset), 67, 68

value (List), 71, 72

value (Polygdbm), 118

value (Polyhash), 120

value (Rbset), 129, 130

value (Redblackmap), 135

value (Splaymap), 150

value (Splayset), 152, 153

value (Vector), 173, 174

value (VectorSlice), 175, 176

INDEX

value (Word8Array), 187

value (Word8ArraySlice), 188

value (Word8Vector), 189

value (Word8VectorSlice), 190
findi

value (Array), 3, 4

value (ArraySlice), 10, 12

value (CharArray), 30

value (CharArraySlice), 31

value (CharVector), 32

value (CharVectorSlice), 33

value (Vector), 173, 174

value (VectorSlice), 175, 176

value (Word8Array), 187

value (Word8ArraySlice), 188

value (Word8Vector), 189

value (Word8VectorSlice), 190
first

value (Substring), 159, 160
flag

type (Dynlib), 39, 40
flatten

value (Msp), 92, 94
floatVec

value (Mosml), 85
floor

value (General), 53, 55

value (Real), 132, 133
flush_out

value (NJ93), 105
flush_ppstream

value (PP), 109, 110
flushOut

value (BinIO), 14, 15

value (TextI0), 164, 166
fmt

value (Date), 35, 36

value (Int), 61, 62

value (IntInf), 64

value (Real), 132, 133

value (Time), 168, 169

value (Word), 181, 182

value (Word8), 184, 185
fname

value (Mysqgl), 99, 101

value (Postgres), 122, 124
fnames

value (Mysqgl), 99, 101

value (Postgres), 122, 124

fnumber
value (Mysql), 99, 101
value (Postgres), 122, 125
fold
value (Array2), 6, 8
value (Gdbm), 45, 46
value (Hashset), 57, 58
value (NJ93), 104
value (Polygdbm), 118, 119
value (Regex), 137, 140
foldi
value (Array2), 6, 8
foldl
value (Array), 3, 4
value (ArraySlice), 10, 11
value (Binarymap), 17
value (Binaryset), 19, 20
value (CharArray), 30
value (CharArraySlice), 31
value (CharVector), 32
value (CharVectorSlice), 33
value (Intmap), 65
value (Intset), 67, 68
value (List), 71,72
value (ListPair), 74, 75
value (Rbset), 129, 130
value (Redblackmap), 135
value (Splaymap), 150
value (Splayset), 152, 153
value (Substring), 159, 162
value (Vector), 173, 174
value (VectorSlice), 175, 176
value (Weak), 178, 179
value (Word8Array), 187
value (Word8ArraySlice), 188
value (Word8Vector), 189
value (Word8VectorSlice), 190
foldlEq
value (ListPair), 74, 75
foldli
value (Array), 3, 4
value (ArraySlice), 10, 12
value (CharArray), 30
value (CharArraySlice), 31
value (CharVector), 32
value (CharVectorSlice), 33
value (Vector), 173, 174
value (VectorSlice), 175, 177
value (Weak), 178, 180

201

202

value (Word8Array), 187

value (Word8ArraySlice), 188
value (Word8Vector), 189

value (Word8VectorSlice), 190

foldr

value (Array), 3, 4

value (ArraySlice), 10, 11
value (Binarymap), 17

value (Binaryset), 19, 20
value (CharArray), 30

value (CharArraySlice), 31
value (CharVector), 32

value (CharVectorSlice), 33
value (Intmap), 65

value (Intset), 67, 68

value (List), 71,72

value (ListPair), 74,75

value (Rbset), 129, 130

value (Redblackmap), 135
value (Splaymap), 150

value (Splayset), 152, 153
value (Substring), 159, 162
value (Vector), 173, 174

value (VectorSlice), 175, 176
value (Weak), 178, 179

value (Word8Array), 187

value (Word8ArraySlice), 188
value (Word8Vector), 189
value (Word8VectorSlice), 190

foldrEq

value (ListPair), 74,75

foldri

font

value (Array), 3, 4

value (ArraySlice), 10, 12
value (CharArray), 30

value (CharArraySlice), 31
value (CharVector), 32

value (CharVectorSlice), 33
value (Vector), 173, 174
value (VectorSlice), 175, 177
value (Weak), 178, 180

value (Word8Array), 187
value (Word8ArraySlice), 188
value (Word8Vector), 189
value (Word8VectorSlice), 190

type (Gdimage), 48, 49

fonta

value (Msp), 93, 96

force

value (Susp), 163
form

value (Msp), 94, 97
forma

value (Msp), 94, 98
formattable

value (Mysql), 100, 103

value (Postgres), 123, 126
fpe

value (Signal), 143
frag

type (General), 52, 54
frame

value (Msp), 94, 98
framea

value (Msp), 94, 98
frameset

value (Msp), 94, 98
fromCString

value (Char), 27, 29

value (String), 154, 156
fromDefault

value (Real), 132, 133
fromInt

value (Int), 61

value (IntInf), 64

value (Real), 132, 133

value (Word), 181, 183

value (Word8), 184, 186
fromLarge

value (Int), 61

value (IntInf), 64

value (Word), 181, 183

value (Word8), 184, 186
fromlLargeInt

value (Word), 181, 183

value (Words8), 184, 186
fromLargeWord

value (Word), 181, 183

value (Word8), 184, 186
fromList

value (Array), 3

value (Array2), 6,7

value (CharArray), 30

value (CharVector), 32

value (Dynarray), 38

value (Vector), 173

value (Word8Array), 187

INDEX

value (Word8Vector), 189
fromMicroseconds

value (Time), 168
fromMilliseconds

value (Time), 168
fromPng

value (Gdimage), 48, 49
fromReal

value (Time), 168, 169
fromSeconds

value (Time), 168
fromString

value (Bool), 21

value (Char), 27, 28

value (Date), 35, 37

value (Int), 61, 62

value (IntInf), 64

value (Path), 114, 116

value (Real), 132, 133

value (String), 154, 155

value (Time), 168, 169

value (Word), 181, 183

value (Word8), 184, 186
fromtag

value (Mysqgl), 100

value (Postgres), 123
fromTimeLocal

value (Date), 35, 37
fromTimeUniv

value (Date), 35, 37
fromUnixPath

value (Path), 114, 117
fromWord

value (Signal), 143
ftype

value (Mysqgl), 100

value (Postgres), 123
ftypes

value (Mysqgl), 100

value (Postgres), 123
full

value (ArraySlice), 10, 11

value (CharArraySlice), 31

value (CharVectorSlice), 33

value (Substring), 159, 160

value (VectorSlice), 175, 176

value (Word8ArraySlice), 188

value (Word8VectorSlice), 190
fullPath

203

value (FileSys), 42, 43

Gdbm (structure), 45-47
GdbmError
exception (Gdbm), 45
exception (Polygdbm), 118
Gdimage (structure), 48-51
General (structure), 52-56

generator

type (Random), 128
get

value (Weak), 178
getbool

value (Mysql), 100, 102
value (Postgres), 123, 125

getc

value (Substring), 159, 160
getCookie

value (Mosmlcookie), 91
getCookieValue

value (Mosmlcookie), 91
getcptr

value (Callback), 24, 26
getCurrentLocation

value (Location), 77
getdate

value (Mysql), 99, 102

value (Postgres), 122, 125
getdatetime

value (Mysql), 100, 102

value (Postgres), 123, 125
getDir

value (FileSys), 42, 43
getdynfield

value (Mysql), 100, 102

value (Postgres), 123, 125
getdyntup

value (Mysgl), 100, 102

value (Postgres), 123, 126
getdyntups

value (Mysql), 100, 102

value (Postgres), 123, 126
getEnv

value (Process), 127
getinetaddr

value (Socket), 145, 147
getint

value (Mysqgl), 99, 102

value (Postgres), 122, 125

204

getlItem
value (ArraySlice), 10, 11
value (CharArraySlice), 31
value (CharVectorSlice), 33
value (List), 71,73
value (VectorSlice), 175, 176
value (Word8ArraySlice), 188
value (Word8VectorSlice), 190

getLexeme

value (Lexing), 69, 70
getLexemeChar

value (Lexing), 69, 70
getLexemeEnd

value (Lexing), 69, 70
getLexemeStart

value (Lexing), 69, 70
getOpt

value (Option), 108
getOrder

value (Rbset), 129
getParent

value (Path), 114, 116
getreal

value (Mysqgl), 99, 102

value (Postgres), 122, 125
getstring

value (Mysqgl), 99, 102

value (Postgres), 122, 125
gettime

value (Mysqgl), 100, 102

value (Postgres), 123, 125

getTransparent

value (Gdimage), 48, 50
getVolume

value (Path), 114, 116
Graphic

exception (General), 52

hl

value (Msp), 92, 96
h2

value (Msp), 92
h3

value (Msp), 92
h4

value (Msp), 92
h5

value (Msp), 92
h6

value (Msp), 92
hash

value (FileSys), 42, 44

value (Hashset), 57, 58

value (Polyhash), 120, 121

value (Rbset), 129
hash_param

value (Polyhash), 120, 121
hash_table

type (Polyhash), 120
Hashset (structure), 57-58
hasKey

value (Gdbm), 45, 46

value (Polygdbm), 118, 119
Hd

exception (NJ93), 104
hd

value (List), 71

value (NJ93), 104
head

value (Msp), 92, 95
Help (structure), 59—60
help

value (Help), 59
helpdirs

value (Help), 59
host

value (Mysgl), 99, 101

value (Postgres), 122, 124
hour

value (Date), 35, 36
hr

value (Msp), 93, 96
hra

value (Msp), 93, 96
html

value (Msp), 92, 95
htmlcolors

value (Gdimage), 48, 50
htmldoc

value (Msp), 92, 95
htmlencode

value (Msp), 94, 98
hup

value (Signal), 143

Icase
constructor (Regex), 138
ignore

INDEX

INDEX

value (General), 52, 55
ill

value (Signal), 143
image

type (Gdimage), 48, 49

value (Gdimage), 48, 49
img

value (Msp), 93, 97
imga

value (Msp), 93, 97
implode

value (NJ93), 104

value (SML90), 142

value (String), 154, 155
in_flags

type (Socket), 145, 148
in_stream_length

value (Nonstdio), 106
inc

value (NJ93), 104
incheckbox

value (Msp), 94, 98
INCONSISTENT

constructor (PP), 109
indexfiles

value (Help), 59
inetAddr

value (Socket), 145, 146
inetDgram

value (Socket), 145, 147
inetStream

value (Socket), 145, 147
inhidden

value (Msp), 94, 98
inpassword

value (Msp), 94, 98
input

value (BinIO), 14

value (Msp), 94, 98

value (NJ93), 104

value (SML90), 142

value (TextI0), 164, 165
inputl

value (BinIO), 14, 15

value (TextI0), 164, 165
input_binary_int

value (Nonstdio), 106
input_char

value (Nonstdio), 106

205

input_line

value (NJ93), 105
input_value

value (Nonstdio), 106
inputa

value (Msp), 94, 98
inputAll

value (BinIO), 14, 15

value (TextI0), 164, 165
inputc

value (NJ93), 105
inputLine

value (TextI0), 164, 165
inputN

value (BinIO), 14, 15

value (TextI0), 164, 165
inputNoBlock

value (BinIO), 14, 15

value (TextI0), 164, 165
inradio

value (Msp), 94, 98
inreset

value (Msp), 94, 98
insert

value (Binarymap), 17

value (Gdbm), 45, 46

value (Intmap), 65

value (Polygdbm), 118

value (Polyhash), 120

value (Redblackmap), 135

value (Splaymap), 150
installPP

value (Meta), 81, 82
instream

type (BinIO), 14

type (NJ93), 104

type (SML90), 142

type (TextIO), 164
insubmit

value (Msp), 94, 98
Int (structure), 61-63
int

type (General), 52, 53

type (Int), 61

type (IntInf), 64

value (Signal), 143
Interrupt

exception (General), 52
intersection

206

value (Binaryset), 19, 20

value (Intset), 67

value (Rbset), 129, 130

value (Splayset), 152, 153
intext

value (Msp), 94, 98
IntInf (structure), 64
Intmap (structure), 65-66
intmap

type (Intmap), 65
Intset (structure), 67-68
intset

type (Intset), 67
intv

type (Rbset), 129
Invalid_argument

exception (General), 52
InvalidArc

exception (Path), 114

TIo

exception (General), 52
isAbsolute

value (Path), 114, 115
isAlpha

value (Char), 27, 28
isAlphaNum

value (Char), 27, 28
isAscii

value (Char), 27, 28
isCanonical

value (Path), 114, 116
isCntrl

value (Char), 27, 28
isdead

value (Weak), 178, 179
isDigit

value (Char), 27, 28
isDir

value (FileSys), 42, 43
isDst

value (Date), 35, 36
isEmpty

value (ArraySlice), 10, 11

value (Binaryset), 19

value (CharArraySlice), 31

value (CharVectorSlice), 33

value (Hashset), 57, 58

value (Intset), 67

value (Rbset), 129, 130

INDEX

value (Splayset), 152

value (Substring), 159, 160

value (VectorSlice), 175, 176

value (Word8ArraySlice), 188

value (Word8VectorSlice), 190
isGraph

value (Char), 27, 28
isHexDigit

value (Char), 27, 28
isLink

value (FileSys), 42,43
isLower

value (Char), 27, 28
isnull

value (Mysqgl), 100, 102

value (Postgres), 123, 125
isPrefix

value (String), 154, 155

value (Substring), 159, 162

isPrint

value (Char), 27, 28
isPunct

value (Char), 27, 28
isRegistered

value (Callback), 24, 25
isRelative

value (Path), 114, 115
isRoot

value (Path), 114, 115
isSome

value (Option), 108
isSpace

value (Char), 27, 28
isSubset

value (Binaryset), 19

value (Hashset), 57, 58

value (Intset), 67

value (Rbset), 129, 130

value (Splayset), 152
isSubstring

value (String), 154, 155

value (Substring), 159, 162
isSuccess

value (Process), 127
isSuffix

value (String), 154, 155

value (Substring), 159, 162
isUpper

value (Char), 27, 28

INDEX

isweak

value (Weak), 178
itemEnd

value (Parsing), 112, 113
itemStart

value (Parsing), 112, 113

join

value (Option), 108
joinBaseExt

value (Path), 114, 117
joinDirFile

value (Path), 114, 116

kill
value (Signal), 143
value (Unix), 171, 172

last
value (List), 71

length
value (Array), 3
value (ArraySlice), 10
value (CharArray), 30
value (CharArraySlice), 31
value (CharVector), 32
value (CharVectorSlice), 33
value (List), 71,72
value (Vector), 173
value (VectorSlice), 175
value (Weak), 178, 179
value (Word8Array), 187
value (Word8ArraySlice), 188
value (Word8Vector), 189
value (Word8VectorSlice), 190

lexbuf
type (Lexing), 69

Lexing (structure), 69—70

1i
value (Msp), 93, 97

liberal
value (Meta), 81, 82

List (structure), 71-73

list
type (General), 52, 54
type (List), 71

listDir
value (Mosml), 85

listen
value (Socket), 145, 147

207

listItems

value (Binarymap), 17

value (Binaryset), 19, 20

value (Gdbm), 45, 46

value (Hashset), 57, 58

value (Intmap), 65

value (Intset), 67, 68

value (Polygdbm), 118, 119

value (Polyhash), 120

value (Rbset), 129, 130

value (Redblackmap), 135

value (Splaymap), 150

value (Splayset), 152, 153
listKeys

value (Gdbm), 45, 46

value (Polygdbm), 118, 119
ListPair (structure), 74-75
Listsort (structure), 76
In

value (Math), 79, 80

value (NJ93), 104

value (SML90), 142
load

value (Meta), 81, 83
loaded

value (Meta), 81, 83
loadOne

value (Meta), 81, 83
loadPath

value (Meta), 81, 83
localOffset

value (Date), 35, 37
Location

type (Location), 77
Location (structure), 77-78
logl0

value (Math), 79, 80
log2

value (IntInf), 64
lookahead

value (BinIO), 14, 15

value (NJ93), 105

value (SML90), 142

value (TextIO0), 164, 165

makestring

value (General), 53, 56
map

value (Binarymap), 17, 18

208

value (CharVector), 32
value (CharVectorSlice), 33
value (Gdbm), 45, 46
value (Intmap), 65
value (List), 71,72
value (ListPair), 74
value (Msp), 93, 97
value (Option), 108
value (Polygdbm), 118, 119
value (Polyhash), 120, 121
value (Rbset), 129, 130
value (Redblackmap), 135, 136
value (Regex), 137, 140
value (Splaymap), 150, 151
value (String), 154, 155
value (Vector), 173, 174
value (VectorSlice), 175, 176
value (Word8Vector), 189
value (Word8VectorSlice), 190
mapa
value (Msp), 93, 97
mapEq
value (ListPair), 74,75
mapi
value (CharVector), 32
value (CharVectorSlice), 33
value (Vector), 173, 174
value (VectorSlice), 175, 177
value (Word8Vector), 189
value (Word8VectorSlice), 190
mapMono
value (Rbset), 129, 130
mapPartial
value (List), 71,72
value (Option), 108
mark0
value (Msp), 92, 95
markOa
value (Msp), 92, 95
markl
value (Msp), 92, 95
markla
value (Msp), 92, 95
Match
exception (General), 52
Math (structure), 79-80
max
value (Int), 61, 62
value (IntInf), 64

value (NJ93), 104

value (Rbset), 129, 131

value (Real), 132

value (Word), 181, 182

value (Word8), 184, 185
maxChar

value (Char), 27
maxInt

value (Int), 61

value (IntInf), 64
maxLen

value (Array), 3

value (CharArray), 30

value (CharVector), 32

value (Vector), 173

value (Weak), 178, 179

value (Word8Array), 187

value (Word8Vector), 189
maxOrd

value (Char), 27
maxSize

value (String), 154
md5sum

value (Mosml), 85
member

value (Binaryset), 19

value (Hashset), 57

value (Intset), 67

value (Rbset), 129, 130

value (Splayset), 152
merge

value (Listsort), 76
mergeUniq

value (Listsort), 76
Meta (structure), 81-84
min

value (Int), 61, 62

value (IntInf), 64

value (NJ93), 104

value (Rbset), 129, 131

value (Real), 132

value (Word), 181, 182

value (Word8), 184, 185
minChar

value (Char), 27
minInt

value (Int), 61

value (IntInf), 64
minute

INDEX

INDEX

value (Date), 35, 36
mk_ppstream

value (PP), 109
mkAbsolute

value (Path), 114, 116
mkCanonical

value (Path), 114, 116
mkDict

value (Binarymap), 17

value (Redblackmap), 135

value (Splaymap), 150
mkDir

value (FileSys), 42,43
mkLoc

value (Location), 77
mkPolyTable

value (Polyhash), 120, 121
mkRelative

value (Path), 114, 116
mkTable

value (Polyhash), 120
mod

value (General), 53, 56

value (Int), 61, 62

value (IntInf), 64

value (Word), 181, 182

value (Word8), 184, 185
mode

type (Gdimage), 48, 49
modify

value (Array), 3, 4

value (Array?2), 6, 7

value (ArraySlice), 10, 12

value (CharArray), 30

value (CharArraySlice), 31

value (Weak), 178, 179

value (Word8Array), 187

value (Word8ArraySlice), 188
modifyi

value (Array), 3, 4

value (Array?2), 6, 8

value (ArraySlice), 10, 12

value (CharArray), 30

value (CharArraySlice), 31

value (Weak), 178, 180

value (Word8Array), 187

value (Word8ArraySlice), 188
modTime

value (FileSys), 42,43

209

month

type (Date), 35

value (Date), 35, 36
Mosml (structure), 85-86
Mosmlcgi (structure), 87-90
Mosmlcookie (structure), 91
Msp (structure), 92-98
Mysql (structure), 99—103

name

value (CommandLine), 34
nCols

value (Array?2), 6, 7
ne

value (IntInf), 64
new

value (Buffer), 22
newgen

value (Random), 128
newgenseed

value (Random), 128
Newline

constructor (Regex), 138
nfields

value (Mysqgl), 99, 101

value (Postgres), 122, 124
nilLocation

value (Location), 77
NJ93 (structure), 104—105
N1

constructor (Msp), 94
NO_RECVS

constructor (Socket), 147
NO_RECVS_OR_SENDS

constructor (Socket), 147
NO_SENDS

constructor (Socket), 147
NonMonotonic

exception (Rbset), 129
Nonstdio (structure), 106
not

value (Bool), 21

value (General), 53, 55
notb

value (Word), 181, 182

value (Word8), 184, 185
Notbol

constructor (Regex), 139
notContains

210

value (Char), 27, 28
Noteol
constructor (Regex), 139
NotFound
exception (Binarymap), 17
exception (Binaryset), 19
exception (Gdbm), 45
exception (Hashset), 57
exception (Intmap), 65
exception (Intset), 67
exception (Polygdbm), 118
exception (Rbset), 129
exception (Redblackmap), 135
exception (Splaymap), 150
exception (Splayset), 152
NotInt
exception (Msp), 92
noTransparent
value (Gdimage), 48, 50
NotWriter
exception (Gdbm), 45
exception (Polygdbm), 118
now
value (Time), 168
nRows
value (Array?2), 6,7
nth
value (List), 71
value (NJ93), 104
nthtail
value (NJ93), 104
ntuples
value (Mysql), 99, 101
value (Postgres), 122, 124
Null
exception (Mysql), 99
exception (Postgres), 122
null
value (List), 71
numItems
value (Binarymap), 17
value (Binaryset), 19, 20
value (Gdbm), 45, 46
value (Hashset), 57, 58
value (Intmap), 65
value (Intset), 67
value (Polygdbm), 118, 119
value (Polyhash), 120
value (Rbset), 129, 130

INDEX

value (Redblackmap), 135
value (Splaymap), 150
value (Splayset), 152, 153

value (General), 52, 55
offset

value (Date), 35, 36
oid

constructor (Postgres), 124

type (Mysql), 99

type (Postgres), 122, 124
ol

value (Msp), 93, 97
ola

value (Msp), 93, 97
open_append

value (NJ93), 105
open_in

value (NJ93), 104

value (SML90), 142
open_in_bin

value (NJ93), 105

value (Nonstdio), 106
open_out

value (NJ93), 105

value (SML90), 142
open_out_bin

value (NJ93), 105

value (Nonstdio), 106
open_out_exe

value (Nonstdio), 106
openAppend

value (BinIO), 14, 15

value (TextI0), 164, 166
openbase

value (Mysql), 99, 100

value (Postgres), 122, 124
openDir

value (FileSys), 42
openln

value (BinIO), 14

value (TextI0), 164, 165
openmode

type (Gdbm), 45
openOut

value (BinIO), 14, 15

value (TextI0), 164, 166
Option

INDEX

exception (General), 52

exception (Option), 108
Option (structure), 108
option

type (General), 52, 53

type (Option), 108

value (Msp), 94, 98
options

value (Mysqgl), 99, 101

value (Postgres), 122, 124

orb

value (Word), 181, 182

value (Word8), 184, 185
ord

value (Char), 27

value (NJ93), 104

value (SML90), 142
order

type (General), 52, 53
ordof

value (NJ93), 104
orthodox

value (Meta), 81, 82
0S (structure), 107
OSAerr

type (AppleScript), 2
OSAID

type (AppleScript), 2
out_flags

type (Socket), 145, 148
Out_of_memory

exception (General), 52
output

value (BinIO), 14, 15

value (NJ93), 105

value (SML90), 142

value (TextI0), 164, 166
outputl

value (BinIO), 14, 15

value (TextI0), 164, 166
output_binary_int

value (Nonstdio), 106
output_byte

value (Nonstdio), 106
output_char

value (Nonstdio), 106
output_value

value (Nonstdio), 106
outputc

value (NJ93), 105
outputSubstr

value (TextI0), 164
outstream

type (BinIO), 14

type (TextIO), 164
Overflow

exception (General), 52

p

value (Msp), 92, 96
pa

value (Msp), 92, 96
packString

value (Byte), 23
padLeft

value (StringCvt), 157, 158

padRight

value (StringCvt), 157, 158

ParamMissing

exception (Msp), 92
parentArc

value (Path), 114, 115
ParseError

exception (Parsing), 112
parseTables

type (Parsing), 112
Parsing (structure), 112—-113
part

type (Mosmlcgi), 87
part_data

value (Mosmlcgi), 87, 88
part_field_integer

value (Mosmlcgi), 87, 89
part_field_string

value (Mosmlcgi), 87, 88
part_field_strings

value (Mosmlcgi), 87, 88
part_fieldnames

value (Mosmlcgi), 87, 88
part_type

value (Mosmlcgi), 87
partition

value (List), 71,72
passive

type (Socket), 145, 146
Path

exception (Path), 114
Path (structure), 114-117

211

212

peek

value (Binarymap), 17

value (Binaryset), 19

value (Gdbm), 45, 46

value (Hashset), 57

value (Intmap), 65

value (Polygdbm), 118, 119

value (Polyhash), 120

value (Redblackmap), 135

value (Splaymap), 150

value (Splayset), 152
peekInsert

value (Polyhash), 120
peekVal

value (Parsing), 112
pf_file

type (Socket), 145, 146
pf_inet

type (Socket), 145, 146
pi

value (Math), 79
pipe

value (Signal), 143
Polygdbm (structure), 118—119
Polyhash (structure), 120-121
polyHash

value (Hashset), 57, 58
port

value (Mysql), 99, 101

value (Postgres), 122, 124
pos_in

value (Nonstdio), 106
pos_out

value (Nonstdio), 106
position

value (Substring), 159, 162
Postgres (structure), 122126
pow

value (IntInf), 64

value (Math), 79
PP (structure), 109-111
pp_to_string

value (PP), 109, 110
ppconsumer

type (PP), 109
ppstream

type (General), 52, 53
pre

value (Msp), 93, 96

precision

value (Int), 61

value (IntInf), 64
pred

value (Char), 27, 28
print

value (NJ93), 104

value (TextI0), 164, 166
printDepth

value (Meta), 81
printLength

value (Meta), 81
printseq

value (Msp), 92, 94
printval

value (Meta), 81
prmap

value (Msp), 92, 94
proc

type (Unix), 171
Process (structure), 127
prsep

value (Msp), 92, 94

quietdec

value (Meta), 81, 84
quit

value (Meta), 81

value (Signal), 143
quot

value (Int), 61, 62

value (IntInf), 64
quotation

value (Meta), 81, 84
quotRem

value (IntInf), 64

radix

type (StringCvt), 157
Random (structure), 128
random

value (Random), 128
randomlist

value (Random), 128
range

value (Random), 128
rangelist

value (Random), 128
Rbset (structure), 129-131

INDEX

readDir

value (FileSys), 42
reader

type (StringCvt), 157
readLink

value (FileSys), 42,43
Real (structure), 132-134
real

type (General), 52, 54

type (Math), 79

type (Real), 132

value (General), 53, 55
real_timer

type (Timer), 170
realfmt

type (StringCvt), 157
realPath

value (FileSys), 42,43
reap

value (Unix), 171, 172
recvArr

value (Socket), 146, 148
recvArr’

value (Socket), 146, 148
recvArrFrom

value (Socket), 146, 149
recvArrFrom’

value (Socket), 146, 149
recvVec

value (Socket), 146, 148
recvVec’

value (Socket), 146, 148
recvVecFrom

value (Socket), 146, 149
recvVecFrom’

value (Socket), 146, 149
Redblackmap (structure), 135-136
ref

constructor (General), 54

type (General), 52, 54
regcomp

value (Regex), 137, 138
Regex

exception (Regex), 137
Regex (structure), 137-141
regex

type (Regex), 137
regexec

value (Regex), 137, 139

213

regexecBool

value (Regex), 137, 139
region

type (Array2), 6, 8
register

value (Callback), 24, 25
regmatch

value (Regex), 137, 139
regmatchBool

value (Regex), 137, 139
regnexec

value (Regex), 137, 139
regnexecBool

value (Regex), 137, 139
rem

value (Int), 61, 62

value (IntInf), 64
remove

value (Binarymap), 17

value (FileSys), 42,43

value (Gdbm), 45, 46

value (Intmap), 65

value (Polygdbm), 118, 119

value (Polyhash), 120

value (Redblackmap), 135

value (Splaymap), 150
rename

value (FileSys), 42,43
reorganize

value (Gdbm), 45, 47

value (Polygdbm), 118, 119
replace

value (Regex), 137, 139
replacel

value (Regex), 137, 139
replacer

type (Regex), 137
reset

value (Buffer), 22

value (Mysqgl), 99, 101

value (Postgres), 122, 124
resultstatus

value (Mysql), 99, 101

value (Postgres), 122, 124
retrieve

value (Binaryset), 19

value (Hashset), 57

value (Intmap), 65

value (Splayset), 152

214

rev

value (List), 71,72
revapp

value (Binarymap), 17

value (Binaryset), 19, 20

value (Intmap), 65

value (Intset), 67, 68

value (NJ93), 104

value (Rbset), 129, 130

value (Redblackmap), 135

value (Splaymap), 150

value (Splayset), 152, 153
revAppend

value (List), 71, 72
revfold

value (NJ93), 104
rewindDir

value (FileSys), 42
rgb

type (Gdimage), 48, 49

value (Gdimage), 48, 50
rmDir

value (FileSys), 42,43
round

value (General), 53, 55

value (Real), 132, 133
row

value (Array2), 6,7
RowMa jor

constructor (Array?2), 6
RTLD_LAZY

constructor (Dynlib), 40
RTLD_NOW

constructor (Dynlib), 40
run

value (Mosml), 85
runresult

type (Mosml), 85

sameDesc
value (Socket), 145, 149
sameSign
value (Int), 61, 62
value (IntInf), 64
value (Real), 132, 133
scan
value (Bool), 21
value (Date), 35, 37
value (Int), 61, 62

INDEX

value (IntInf), 64

value (Real), 132, 133

value (Time), 168, 169

value (Word), 181, 183

value (Words), 184, 186
scanStream

value (TextI0), 164, 165
scanString

value (StringCvt), 157
second

value (Date), 35, 36
seek_in

value (Nonstdio), 106
seek_out

value (Nonstdio), 106
segv

value (Signal), 143
select

value (Msp), 94, 98

value (Socket), 145, 149
sendArr

value (Socket), 146, 148
sendArr’

value (Socket), 146, 148
sendArrTo

value (Socket), 146, 148
sendArrTo’

value (Socket), 146, 148
sendVec

value (Socket), 146, 147
sendVec’

value (Socket), 146, 148
sendVecTo

value (Socket), 146, 148
sendVecTo’

value (Socket), 146, 148
set

type (Binaryset), 19

type (Hashset), 57

type (Rbset), 129

type (Splayset), 152

value (Weak), 178
setCookie

value (Mosmlcookie), 91
setCookies

value (Mosmlcookie), 91
setTime

value (FileSys), 42,43
setTransparent

INDEX

value (Gdimage), 48, 50
showquery
value (Mysql), 100, 103
value (Postgres), 123, 126
shutdown
value (Socket), 145, 147
shutdown_mode
type (Socket), 145
sign
value (Int), 61, 62
value (IntInf), 64
value (Real), 132
Signal (structure), 143—-144
signal
type (Signal), 143
type (Unix), 171
sin
value (Math), 79
value (NJ93), 104
value (SML90), 142
singleton
value (Binaryset), 19
value (Hashset), 57
value (Intset), 67
value (Rbset), 129, 130
value (Splayset), 152
sinh
value (Math), 79, 80
Size
exception (General), 52
size
value (Buffer), 22
value (Gdimage), 48, 49
value (String), 154
value (Substring), 159, 160
skipWs
value (StringCvt), 157, 158
sleep
value (Process), 127
slice
type (ArraySlice), 10
type (CharArraySlice), 31
type (CharVectorSlice), 33
type (VectorSlice), 175
type (Word8ArraySlice), 188
type (Word8VectorSlice), 190
value (ArraySlice), 10
value (CharArraySlice), 31
value (CharVectorSlice), 33

215

value (Substring), 159, 160

value (VectorSlice), 175

value (Word8ArraySlice), 188

value (Word8VectorSlice), 190
SMLI0 (structure), 142
sock

type (Socket), 145, 146
sock_addr

type (Socket), 145, 146
sock_desc

type (Socket), 145
sockDesc

value (Socket), 145, 149
Socket (structure), 145-149
sort

value (Arraysort), 13

value (Listsort), 76
sorted

value (Arraysort), 13

value (Listsort), 76
Span

exception (General), 52

exception (Substring), 159
span

value (Substring), 159, 162
specialfiles

value (Help), 59
Splaymap (structure), 150-151
Splayset (structure), 152—-153
splitAt

value (Substring), 159, 162
splitBaseExt

value (Path), 114, 117
splitDirFile

value (Path), 114, 116
splitl

value (StringCvt), 157

value (Substring), 159, 161
splitr

value (Substring), 159, 161
sqrt

value (Math), 79

value (NJ93), 104

value (SML90), 142
startCPUTimer

value (Timer), 170
startRealTimer

value (Timer), 170
status

216

type (Process), 127

value (Mysql), 99, 101

value (Postgres), 122, 124
std_err

value (NJ93), 105
std_in

value (NJ93), 104

value (SML90), 142
std_out

value (NJ93), 105

value (SML90), 142
stdErr

value (TextI0), 164, 166
stdIn

value (TextIO0), 164, 165
stdOut

value (TextI0), 164, 166
stdoutPng

value (Gdimage), 48, 50
stop

value (Signal), 143, 144
Str

constructor (Regex), 140
str

value (String), 154, 155
stream

type (Socket), 145, 146
streamsOf

value (Unix), 171
String (structure), 154—-156
string

type (General), 52, 54

type (String), 154

value (Gdimage), 49, 51

value (Substring), 159, 160
StringCvt (structure), 157-158
stringToBytes

value (Byte), 23
stringUp

value (Gdimage), 49, 51
strong

value (Msp), 93, 96
style

type (Gdimage), 48, 49
sub

value (Array), 3, 4

value (Array2), 6,7

value (ArraySlice), 10

value (CharArray), 30

value (CharArraySlice), 31

value (CharVector), 32

value (CharVectorSlice), 33

value (Dynarray), 38

value (Msp), 93, 96

value (String), 154

value (Substring), 159, 160

value (Vector), 173

value (VectorSlice), 175

value (Weak), 178, 179

value (Word8Array), 187

value (Word8ArraySlice), 188

value (Word8Vector), 189

value (Word8VectorSlice), 190
subArray

value (Dynarray), 38
sublist

value (Rbset), 129, 131
Subscript

exception (General), 52
subset

value (Rbset), 129, 131
subslice

value (ArraySlice), 10, 11

value (CharArraySlice), 31

value (CharVectorSlice), 33

value (VectorSlice), 175, 176

value (Word8ArraySlice), 188

value (Word8VectorSlice), 190
substitute

value (Regex), 137, 140
substitutel

value (Regex), 137, 140
Substring

exception (NJ93), 104
Substring (structure), 159-162
substring

type (General), 52, 54

type (Substring), 159

value (NJ93), 104

value (String), 154

value (Substring), 159, 160
succ

value (Char), 27

success

value (Process), 127
sup

value (Msp), 93, 96
Sus

INDEX

INDEX

constructor (Regex), 140
Susp (structure), 163
susp

type (Susp), 163
symbolEnd

value (Parsing), 112, 113
symbolStart

value (Parsing), 112
symHandle

type (Dynlib), 39
SysErr

exception (General), 52

exception (0S), 107
syserror

type (General), 52, 54

type (0S), 107
system

value (Process), 127
systemInfo

value (Mosml), 86

table
type (Gdbm), 45
type (Polygdbm), 118
value (Msp), 93, 97
tablea
value (Msp), 93, 97
tabulate
value (Array), 3
value (Array?2), 6, 7
value (CharArray), 30
value (CharVector), 32
value (Dynarray), 38
value (List), 71,72
value (Vector), 173
value (Word8Array), 187
value (Word8Vector), 189
take
value (List), 71
takel
value (StringCvt), 157
value (Substring), 159, 161
taker
value (Substring), 159, 161
tan
value (Math), 79
tanh
value (Math), 79, 80
td

217

value (Msp), 93, 97

tda

value (Msp), 93, 97
term

value (Signal), 143
terminate

value (Process), 127
textarea

value (Msp), 94, 98
textareaa

value (Msp), 94, 98
textInstreamOf

value (Unix), 171, 172
TextIO (structure), 164-167
textOutstreamOf

value (Unix), 171, 172
th

value (Msp), 93, 97
tha

value (Msp), 93, 97
Time

exception (Time), 168
Time (structure), 168—-169
time

type (Time), 168

value (Mosml), 85
Timer (structure), 170
title

value (Msp), 92, 95
tl

value (List), 71

value (NJ93), 104
tmpName

value (FileSys), 42, 44
toCString

value (Char), 27, 29

value (String), 154, 156
toDefault

value (Real), 132, 133
tolnt

value (Int), 61

value (IntInf), 64

value (Word), 181, 183

value (Word8), 184, 186
toIntX

value (Word), 181, 183

value (Word8), 184, 186
tokens

value (Regex), 137, 140

218

value (String), 154, 155

value (Substring), 159, 162
tolarge

value (Int), 61

value (IntInf), 64

value (Word), 181, 183

value (Word8), 184, 186
tolLargelnt

value (Word), 181, 183

value (Word8), 184, 186
tolargelntX

value (Word), 181, 183

value (Word8), 184, 186
toLargeWord

value (Word), 181, 183

value (Word8), 184, 186
toLargeWordX

value (Word), 181, 183

value (Word8), 184, 186
tolargeX

value (Word), 181, 183

value (Word8), 184, 186
tolower

value (Char), 27, 28
toMicroseconds

value (Time), 168, 169
toMilliseconds

value (Time), 168
toPng

value (Gdimage), 48, 49
toReal

value (Time), 168, 169
toSeconds

value (Time), 168
toString

value (Bool), 21

value (Char), 27, 28

value (Date), 35, 36

value (Int), 61, 62

value (IntInf), 64

value (Path), 114, 116

value (Real), 132, 133

value (String), 154, 155

value (Time), 168, 169

value (Word), 181, 182

value (Word8), 184, 185
totalCPUTimer

value (Timer), 170
totalRealTimer

INDEX

value (Timer), 170
toTime

value (Date), 35, 37
toUnixPath

value (Path), 114, 117
toUpper

value (Char), 27, 28
toWord

value (Signal), 143
Tr

constructor (Regex), 140
tr

value (Msp), 93, 97
tra

value (Msp), 93, 97
transform

value (Binarymap), 17, 18

value (Intmap), 65, 66

value (Polyhash), 120, 121

value (Redblackmap), 135, 136

value (Splaymap), 150, 151
translate

value (String), 154, 155

value (Substring), 159, 162
traversal

type (Array?2), 6
triml

value (Substring), 159, 160
trimr

value (Substring), 159, 160
Trs

constructor (Regex), 140
trunc

value (General), 53, 56

value (Real), 132, 133
truncate

value (NJ93), 104
tstp

value (Signal), 143
tt

value (Msp), 93, 96
ttin

value (Signal), 143, 144
ttou

value (Signal), 143, 144
tty

value (Mysql), 99, 101

value (Postgres), 122, 124

INDEX

ul

value (Msp), 93, 96
ula

value (Msp), 93, 97
Unequallengths

exception (ListPair), 74
union

value (Binaryset), 19, 20

value (Intset), 67

value (Rbset), 129, 130

value (Splayset), 152, 153
unit

type (General), 52, 53
Unix (structure), 171-172
unpackString

value (Byte), 23
unpackStringVec

value (Byte), 23
unregister

value (Callback), 24, 25
unzip

value (ListPair), 74
update

value (Array), 3, 4

value (Array?2), 6, 7

value (ArraySlice), 10

value (CharArray), 30

value (CharArraySlice), 31

value (CharVector), 32

value (Dynarray), 38

value (Vector), 173

value (Weak), 178, 179

value (Word8Array), 187

value (Word8ArraySlice), 188

value (Word8Vector), 189
urlencode

value (Msp), 94, 98
use

value (Meta), 81, 82
usrl

value (Signal), 143, 144
usr2

value (Signal), 143, 144

validvVolume

value (Path), 114, 115
valOf

value (Option), 108
valuepoly

219

value (Meta), 81, 84
var
value (Callback), 24, 26
value (Dynlib), 39, 40
vec2list
value (Msp), 92, 95
vecDouble
value (Mosml), 85
vecFloat
value (Mosml), 85
Vector (structure), 173—-174
vector
type (Array), 3
type (BinIO), 14
type (CharArray), 30
type (CharArraySlice), 31
type (CharVector), 32
type (CharVectorSlice), 33
type (General), 52, 54
type (TextIO), 164, 165
type (Vector), 173
type (Word8Array), 187
type (Word8ArraySlice), 188
type (Word8Vector), 189
type (Word8VectorSlice), 190
value (Array), 3
value (ArraySlice), 10, 11
value (CharArray), 30
value (CharArraySlice), 31
value (CharVectorSlice), 33
value (General), 53, 56
value (VectorSlice), 175, 176
value (Word8Array), 187
value (Word8ArraySlice), 188
value (Word8VectorSlice), 190
vector_slice
type (CharArraySlice), 31
type (Word8ArraySlice), 188
VectorSlice (structure), 175-177
verbose
value (Meta), 81, 84

Weak (structure), 178—180
weak

type (Weak), 178

value (Weak), 178
weekDay

value (Date), 35, 36
weekday

220

type (Date), 35
welcome

value (Help), 59
with_pp

value (PP), 109, 110
withtable

value (Gdbm), 45

value (Polygdbm), 118
withtables

value (Gdbm), 45
Word (structure), 181-183
word

type (General), 52, 54

type (Word), 181

type (Word8), 184
Word8 (structure), 184—186
word8

type (General), 52, 54
Word8Array (structure), 187

Word8ArraySlice (structure), 188

Word8Vector (structure), 189

Word8VectorSlice (structure), 190

wordSize
value (Word), 181
value (Word8), 184
wseq
type (Msp), 92, 94

XL

value (Location), 77, 78
xLR

value (Location), 77,78
xorb

value (Word), 181, 182

value (Word8), 184, 185
XR

value (Location), 77,78
xxLR

value (Location), 77,78
XXRL

value (Location), 77, 78
Xy

type (Gdimage), 48, 49

year
value (Date), 35, 36
yearDay
value (Date), 35, 36
yyexit

INDEX

exception (Parsing), 112

yyparse
value (Parsing), 112

zeroTime

value (Time), 168
zip

value (ListPair), 74
zipEq

value (ListPair), 74, 75

