Moscow ML Language Overview

Version 2.00 of June 2000

Sergei Romanenko, Russian Academy of Sciences, Moscow, Russia
Claudio Russo, Cambridge University, Cambridge, United Kingdom
Peter Sestoft, Royal Veterinary and Agricultural University, Copenhagen, Denmark

This is a compact reference to the language implemented by Moscow ML, a superset of Standard ML.
For reference material on Standard ML, see Milner, Tofte, Harper and MacQueen: The Definition of
Standard ML, The MIT Press 1997. For a guide to the practical use of Moscow ML, see the Moscow
ML Owner’s Manual. For a detailed description of all Moscow ML library modules, see the Moscow ML
Library Documentation.

Contents
1 Moscow ML’s relation to Standard ML 2
2 Reserved words 2
3 Comments 2
4 Special constants 2
5 Identifiers 3
6 Infixed operators S
7 Notational conventions used in the grammar 5
8 Grammar for the Moscow ML Core language 6
9 Interactive sessions 9
10 Grammar for the Moscow ML Modules language 10
11 Grammar for the Moscow ML Unit language 13
11.1 Syntax and semantics for units compiled in structure mode 13
11.2 Syntax and semantics for units compiled in foplevel mode 15
12 Further restrictions imposed for Standard ML compliance 17
13 Built-in types, constructors and exceptions 18
14 Built-in variables and functions 19
15 List of all library modules 23

16 The preloaded library modules

The Moscow ML home page is http://mosml.org

25

http://mosml.org

1 Moscow ML’s relation to Standard ML

Moscow ML implements a proper extension of Standard ML, as defined in the 1997 Definition of Standard
ML. This document describes the language implemented by Moscow ML, not Standard ML per se: users
seeking an orthodox Standard ML reference should look elsewhere. Having said that, Moscow ML is
specifically designed to be backwards compatible with Standard ML. Thus every valid Standard ML
program should be a valid Moscow ML program, and Moscow ML may be used as if it were simply a
Standard ML compiler. Any deviation from this behaviour should be reported as a bug.

2 Reserved words

abstype and andalso as cas
handle if in include infix
sharing sig signature struc

co)y 1 4ty 5 5 >

3 Comments

e

t

do datatype else end eqtype exception fn fun functor
infixr let local nonfix of op open orelse raise rec
structure then type val where with withtype while
| = = > #

A comment is any character sequence within comment brackets (* and *) in which comment brackets

are properly nested.

4 Special constants

Integer constants

Examples: 0

Non-examples: 0.0
Real constants

Examples: 0.7

Non-examples: 23
Word constants

Examples: 0w0

Non-examples: 0w0.0

String constants

~0

~0.

~0.

0

7

Owd
~0wd

4

4.

~04 999999 OxFFFF ~0x1ff
0 1E0 =317 OXFFFF -0x1ff
.32E5 3E~7 ~3E~7 3e~7 ~3e~T7
LE5 1E2.0 1E+7 1E-7
0w999999 OwxFFFF Qwxlff
-0wd OwlEOQ OwXFFFF OWXFFFF

A string constant is a sequence, between quotes ("), of zero or more printable characters, spaces, or escape
sequences. An escape sequence starts with the escape character \ and stands for a character sequence:

\a A single character interpreted by the system as alert (BEL, ASCII 7).

\b Backspace (BS, ASCII 8).

\t Horisontal tab (HT, ASCII 9).

\n Linefeed, also known as newline (LF, ASCII 10).

\v Vertical tab (VT, ASCII 11).

\f Form feed (FF, ASCII 12).

\r Carriage return (CR, ASCII 13).

\"c The control character ¢, where ¢ may be any character with ASCII code 64-95 (@ to _).

The ASCII code of \"c is 64 less than that of c.

\ddd The character with code ddd (3 decimal digits denoting an integer 0-255).

\wxxxx The character with code xxxx (4 hexadecimal digits denoting an integer 0-255).

\" The double-quote character (")

\\ The backslash character (\)

\f--f\ This sequence is ignored, where f --f stands for a sequence of one or more formatting
characters (such as space, tab, newline, form-feed).

Character constants

A character constant consists of the symbol # immediately followed by a string constant of length one.
Examples #lla" #"\n" #"\/\Z" #"\255" #"\""

Non-examples: $ "a" #c gunn

5 Identifiers

o alphanumeric: a sequence of letters, digits, primes (’) and underbars (_) starting with a letter or
prime;
e symbolic: any non-empty sequence of the following symbols:
S & S+ -/ <=>20\~ " | ¥

Reserved words (Section 2) are excluded. This means that for example # and | are not identifiers, but ##

and | =] are identifiers. There are several classes of identifiers:
vid (value identifiers) long
tyvar (type variables)
tycon (type constructors) long

lab (record labels)

strid (structure identifiers) long
funid (functor identifiers) long
modid (module identifiers) long
sigid (signature identifiers)

unitid (unit identifiers)

e A type variable ’ a is an alphanumeric identifier starting with a prime.

e A label lab is an identifier, or a positive integral numeral 1 2 3 ... not starting with 0.

e For each identifier class X marked ‘long’ above there is a class longX of long identifiers, which
may have a qualifier consisting of a long structure identifier followed by a dot *.” :

longx = x identifier
longstrid .x qualified identifier

e Although structure and functor identifiers reside in separate name-spaces, the syntax of structure
and functor identifiers is identical. The set of identifiers modid ranges over the union of strid
and funid; longmodid ranges over the union of longstrid and longfunid. Moscow ML uses type
information to resolve each occurrence of a modid or longmodid to a structure or functor identifier
during type checking, using the optional keyword op to resolve any remaining ambiguities. See the
comments at the end of Section 10.

e Any occurrence of a structure identifier strid that is not bound in the current context refers to the
unit implementation unitid.uo of the same name (ie. unitid = strid). At compile time, the unit’s
compiled interface unitid.ui must exist and have been compiled in structure mode. At link time,
the unit’s compiled implementation unitid.uo must exist and have been compiled in structure
mode.

e Any occurrence of a signature identifier sigid that is not bound in the current context refers to the
compiled unit interface unitid.ui of the same name (ie. unitid = sigid). The file unitid.ui
must have been compiled in structure mode from an explicit interface unitid.sig.

6 Infixed operators

An identifier may be given infix status by the infix or infixr directive, which may occur as a declaration
or specification. If identifier id has infix status, then exp; id exp, may occur, in parentheses if necessary,
wherever the application id (exp;, expy) or id{1=expy, 2=exp,} would otherwise occur. Infix identifiers
in patterns are analogous. On the other hand, an occurrence of a qualified identifier, or any identifier
prefixed by op, is treated as non-infixed. The form of the fixity directives is as follows (n > 1):

infix (d) id;---id, left associative
infixr (d) id;---id, rightassociative
nonfix idy---id, non-associative

where (d) is an optional decimal digit d indicating binding precedence. A higher value of d indicates
tighter binding; the default is 0. Fixity directives are subject to the usual scope rules governing visibility of
identifiers declared inside let and local. Fixity directives occurring within dec in a structure expression
struct dec end are local to dec. Fixity directives occurring within spec in a signature sig spec end
are local to spec.

Mixed left-associative operators of the same precedence associate to the left, mixed right-associative
operators of the same precedence associate to the right, and it is illegal to mix left- and right-associative
operators of the same precedence.

7 Notational conventions used in the grammar

e Each syntax class is defined by a list of alternatives, one alternative on each line. An empty phrase
is represented by an empty line.

e The brackets { and) enclose optional phrases.

e For any syntax class X (over which x ranges) we define the syntax class Xseq (over which xseq
ranges) as follows:

xseq = X (singleton sequence)
(empty sequence)
(x1, -+, Xxp) (sequence,n>1)

Alternative phrases are listed in order of decreasing precedence.

L and R indicate left and right association.

The syntax of types binds more tightly than that of expressions.

Each iterated construct (e.g. match) extends as far to the right as possible. Hence a case inside a

case, fn, or fun may have to be enclosed in parentheses.

e Moscow ML phrases that are non-compliant extensions of Standard ML syntax are marked with an
bullet (o) in the margin.

e Moscow ML phrases that are non-compliant generalisations of Standard ML syntax, but have in-

stances that comply with Standard ML, are marked with an an bullet and a number (eN) in the

margin, where N refers to an explanatory comment that appears in Section 12.

8 Grammar for the Moscow ML Core language

Expressions and Matches

exp

infexp

appexp

atexp

exprow
match

mrule

infexp

exp : ty

exp; andalso exp;

exp) orelse exp;

exp handle match

raise exp

if exp; then expy else exp;
while exp; do exp;

case exp of match

fn match

appexp
infexp id infexp;

atexp
appexp atexp

scon
(op) longvid
{ (exprow) }

lab

0

(expr, -+, expy)
[explr g exan
tlexpr, -+, expyl
(expi; -+ i expp)

let dec in expy; --- ; exp, end
[structure modexp as sigexp |
[functor modexp as sigexp |
(exp)

lab = exp { , exprow)
mrule (| match)

pat => exp

type constraint (L)
sequential conjunction
sequential disjunction
handle exception

raise exception
conditional

iteration

case analysis

function expression

infixed application

application

special constant (see Section 4)

value identifier
record

record selector
O-tuple

n-tuple, n > 2
list,n > 0

vector, n > 0
sequence, n > 2
local declaration, n > 1
structure package
functor package

expression row

Declarations and Bindings

dec = val tyvarseq valbind value declaration
fun tyvarseq fvalbind function declaration
type typbind type declaration
datatype datbind { withtype typbind) datatype declaration
datatype tycon = datatype tyconpath datatype replication
abstype datbind { withtype typbind) abstype declaration
with dec end
exception exbind exception declaration
local decy in decp end local declaration
open longstrid, --- longstrid, open declaration, n > 1
structure strbind structure declaration ol
functor funbind functor declaration o2
signature sighind signature declaration o2
empty declaration
decy (;) decy sequential declaration
infix (d) idy---id, infix (left) directive, n > 1
infixr (d) id,---id, infix (right) directive, n > 1
nonfix id;---id, nonfix directive, n > 1
valbind = pat = exp (and valbind) value binding
rec valbind recursive binding
fvalbind = (op) var atpatyy --- atpaty, {:ty) = expi m,n > 1

| {op) var atpatyy --- atpaty, (:ty) = expy

| e

| {op) var atpaty| --- atpaty, {:ty) = expp
(and fvalbind)

typbind = tyvarseq tycon = ty (and typbind) o3
datbind = tyvarseq tycon = conbind (and datbind) o3
conbind = (op) vid (of ty) { | conbind)
exbind = (op) vid (of ry) (and exbind)

(op) vid = (op) longvid { and exbind)

Note: In the fvalbind form above, if var has infix status then either op must be present, or var must be
infixed. Thus, at the start of any clause, op var (atpat, atpat') may be written (atpat var atpat'). The
parentheses may be dropped if ‘: ¢y’ or ‘=" follows immediately.

Type expressions

tyconpath = longtycon long type constructor
longtycon where strid = modexp type constructor projection e
ty n= tyvar type variable
{ { tyrow) } record type expression
tyseq tyconpath type construction
y * o- g tuple type, n > 2
ty; —> ty function type expression
[sigexp 1] package type expression °
(ty)
tyrow n= lab ity {, tyrow) type-expression row
Patterns
atpat = wildcard
scon special constant (see Section 4)
(op) longvid value identifier
{ (patrow) } record
(0 O-tuple
(paty, --- , paty) n-tuple, n > 2
[paty, --- , paty] list,n >0
#[paty, --- , paty] vector, n > 0
(pat)
patrow = ... wildcard
lab = pat { , patrow) pattern row
lab (:ty) { as pat) (, patrow) label as variable
pat = atpat atomic pattern
(op) longvid atpat constructed value
paty vid pat infixed value construction
pat : ty typed
(op) var (:ty) as pat layered

Syntactic restrictions

No pattern may bind the same var twice. No expression row, pattern row or type row may bind the
same lab twice.

No binding valbind, typbind, datbind or exbind may bind the same identifier twice; this applies
also to value constructors within a datbind.

In the left side tyvarseq tycon of any typbind or datbind, tyvarseq must not contain the same tyvar
twice. Moscow ML requires that any fyvar occurring within the right side is in scope (either
explictly or implicitly), but not necessarily in tyvarseq (cf. Section 12, restriction 3).

For each value binding pat = exp within rec, exp must be of the form fn match, possibly enclosed
in parentheses, and possibly constrained by one or more type expressions.

No valbind, datbind, or exbind may bind true, false, nil, ::, or ref. No datbind or exbind may
bind it.

9 Interactive sessions

An expression exp which occurs grammatically at top-level in an interactive session is taken to be an
abbreviation for the declaration

val it = exp

This convention applies to interactive sessions only. In a batch-compiled unit, write val it = exp
orval _ = exp etc.

10

10 Grammar for the Moscow ML Modules language

The Moscow ML Modules language is a superset of the full Standard ML Modules language.

Module expressions

modexp = appmodexp
modexp : sigexp transparent constraint (L)
modexp :> sigexp opaque constraint (L)
functor (modid : sigexp) => modexp generative functor
functor modid : sigexp => modexp applicative functor
rec (strid : sigexp) modexp recursive structure
appmodexp = atmodexp
appmodexp atmodexp functor application o4
atmodexp = struct dec end basic
(op) longmodid module identifier
let dec in modexp end local declaration
(dec) abbreviated structure °
(modexp)
Module bindings
strbind = strid { con) = modexp (and strbind) structure binding
strid as sigexp = exp (and strbind) package binding °
funbind = funid arg, --- arg, (con) = modexp
(and funbind) functor binding, n > 0 ®5
Sfunid (spec) { con) = modexp
(and funbind) abbreviated generative binding
funid as sigexp = exp { and funbind) package binding °
sigbind = sigid = sigexp { and sigbind) signature binding
con n= @ osigexp transparent constraint
1> sigexp opaque constraint
arg = (modid : sigexp) argument of generative functor
modid : sigexp argument of applicative functor e

Signature expressions

sigexp = sig spec end basic
sigid signature identifier
sigexp where typreal type realisation
functor (modid : sigexp) -> sigexp opaque functor signature
functor modid : sigexp —-> sigexp transparent functor signature
rec (strid : sigexp) sigexp recursive structure signature
typreal = type tyvarseq longtycon = ty (and typreal) type realisation o3

11

Specifications and Descriptions

spec = val tyvarseq valdesc value specification)
type typdesc abstract type
type typbind type abbreviation
eqgtype typdesc abstract equality type
datatype datdesc (withtype typbind) datatype with typbind o7
datatype tycon = datatype tyconpath datatype replication
exception exdesc exception
structure strdesc structure
functor fundesc functor
signature sigbind signature
include sigid; -- - strid, include, n > 1
local Ispec in spec end local specifications °
empty
spec {;) spec sequential
spec sharing type type sharing, n > 2
longtycon; = --- = longtycon,
spec sharing structure sharing, n > 2
longstridy = --- = longstrid,
infix (dy idy--- id, infix (left) directive, n > 1 °
infixr (d) id;--- idy infix (right) directive, n > 1 o
nonfix id;---id, nonfix directive, n > 1
Ispec = open longstrid; --- longstrid, (local) open
type typbind type abbreviation
local Ispec in Ispec end local specifications
empty
Ispec (;) Ispec sequential
valdesc == vid : ty (and valdesc) value description
typdesc = tyvarseq tycon (and typdesc) type constructor description
datdesc = tyvarseq tycon = condesc { and datdesc) datatype description o3
condesc = vid (of ty) { | condesc) constructor description
exdesc == vid (of ty) (and exdesc) exception constructor description
strdesc = strid : sigexp (and strdesc) structure description
fundesc = funid : sigexp (and fundesc) functor description

e Although structure and functor identifiers reside in separate name-spaces, the syntax of structure
and functor identifiers is identical. In the grammar, a module identifier longmodid may stand for
either a structure identifier longstrid or a functor identifier longfunid. Thus, a priori, the module
expression (op) longmodid may refer to a either a functor or a structure and the compiler must
resolve this ambiguity ({op) is an optional prefix of the keyword op). Fortunately, the context of
the phrase often rules out one alternative, on the grounds that choosing that alternative would force
type checking to fail. In particular, if (op) longmodid occurs as the right hand side of a structure

12

(functor) binding, then longmodid must be interpreted as a structure (functor) identifier; if (op)
longmodid occurs in the functor position of an application, then longmodid must be interpreted
as a functor identifier; if (op) longmodid is constrained by a signature then the signature forces
a unique interpretation on longmodid (depending on whether the signature specifies a structure or
functor). Similarly, if (op) longmodid occurs as the argument of a functor application, then the
functor’s domain forces a unique interpretation on longmodid. Indeed, the only ambiguity that
remains occurs when (op) longmodid is the body of a functor. In this case, the optional prefix
(op) is used to resolve the ambiguity: the absence of op signals that longmodid refers to structure;
the presence of op signals that op longmodid refers to a functor. When the interpretation of (op)
longmodid is already determined by the context, the optional prefix (op) has no effect. (This
method of disambiguation relies on type information and is performed during type checking.)

e In a functor or functor signature’s formal argument, (modid : sigexp) or modid : sigexp ,
if sigexp specifies a structure then modid binds the equivalent structure identifier strid; if sigexp
specifies a functor, then modid binds the equivalent functor identifier funid.

o In a structure expression struct dec end, any signature declared in dec is local to dec: it does not
define a component of the structure struct dec end, nor is it visible in the type of struct dec
end. (Note that the syntax for signature identifiers is not long, in the sense of Section 5.)

e In a signature expression sig spec end, any signature declared in spec is local to spec: in particu-
lar, such a declaration does not specify that a structure matching sig spec end should also declare
that signature.

Syntactic restrictions

e No binding strbind, funbind, or sighbind may bind the same identifier twice.

e No specification valdesc, typdesc, typbind, datdesc, exdesc, strdesc or fundesc may describe the
same identifier twice; this applies also to value constructors within a datdesc.

e In the left side tyvarseq tycon in any typdesc, typbind, datdesc, or typreal, or specification val
tyvarseq valdesc, tyvarseq must not contain the same ryvar twice. Moscow ML requires that any
tyvar occurring within the right side is in scope (either explictly or implicitly), but not necessarily
in tyvarseq (cf. Section 12, restriction 3).

e No sequential specification may specify the same tycon, vid, strid, funid, sigid or id (in a fixity
specification) twice.

e No valdesc, datdesc, or exdesc may specify true, false, nil, ::, or ref. No datdesc or exdesc
may specify it.
e Ina generative functor functor (modid : sigexp) => modexp or applicative functor functor

modid : sigexp => modexp the body of modexp must be applicative in the sense that it contains
no structure or functor bindings of the form strid as sigexp = exp or funid as sigexp = exp,
excluding those bindings that occur within a Core let-expression. This restriction also applies to
the bodies of functors declared in a funbind.

13

11 Grammar for the Moscow ML Unit language

Moscow ML supports the separate compilation of named program fragments called units. A unit unitid
consists of an optional unit interface in file unitid. sig. Each unit can be compiled in one of two modes:
structure mode and toplevel mode. A unit’s implementation and interface files must be compiled in the
same mode.

In the batch compiler mosmlc, a unit’s compilation mode is specified by preceding it with the command-
line argument -structure (the default) or -toplevel. In the interactive system mosml, the compilation
mode of a unit is determined by the function with which it is compiled: compile and compileStructure
compile in structure mode; compileToplevel compiles in foplevel mode.

Note that the intended mode of a unit is not determined by file name extension or by file content: the
mode must be explicitly indicated to the batch compiler and interactive system.

The syntax and semantics of a unit’s interface and implementation files depends on the mode and is
described in the following sections.

11.1 Syntax and semantics for units compiled in structure mode

In structure mode, the unit interface file unitid.sig, if present, must contain a single Moscow ML
signature declaration binding the signature unitid; the unit implementation file unitid.sml must con-
tain a single Moscow ML structure declaration, binding the structure unitid. The unit interface may be
omitted.

With the batch compiler mosmlc, the files unitid.sig and unitid.sml are compiled in structure
mode if their filenames are preceded by the command line argument -structure, eg:

mosmlc -c -structure unitid.sig unitid.sml
Since structure mode is the default compilation mode, the -structure option may also be omitted:
mosmlc -c unitid.sig unitid.sml

In the interactive system, a unit interface or implementation may be compiled in structure mode using the
functions compile and compileStructure.
The semantics of

- compileStructure ["unitid;",---,"unitid,"] "unitid.sig"; (* if unitid.sig exists *)
- compileStructure ["unitid;",---,"unitid,"] "unitid.sml";
- load "unitid";

is roughly equivalent to that of
- load "unitidy";
- load "unitid,";

- use "unitid.sig"; (* if unitid.sig exists *)
- use "unitid.sml";

Note that the unit interface unitid. sig, if present, should be use’ed in the interactive system, since
the interface declares a signature that is referred to in unitid.sml, and may be referred to in other units
that depend on unit unitid. A structure-mode unit interface has two effects: it (a) declares a signature
and (b) serves to constrain the structure defined in the unit implementation.

14

Structure-mode unit implementation (in file unitid.sml)

unitimp

cdec

structure unitid = modexp
structure unitid :> unitid = modexp
cdec

val tyvarseq valbind
fun tyvarseq fvalbind

type typbind

datatype datbind { withtype typbind)

datatype tycon = datatype tyconpath

abstype datbind { withtype typbind)

with dec end
exception exbind
local decy in decy end
open longstrid, --- longstrid,

cdecy (;) cdecy
infix (d) id,---id,
infixr (d) id;---id,
nonfix id;---id,

Structure-mode unit interface (in file unitid.sig)

unitint

cspec

signature unitid = sigexp
cspec

val tyvarseq valdesc

type typdesc

type typbind

eqtype typdesc

datatype datdesc { withtype typbind)
datatype tycon = datatype tyconpath
exception exdesc

local Ispec in spec end

cspec ;) cspec
infix (d) idy - idy
infixr (d) idy--- id,

nonfix id;---id,

Syntactic restrictions

structure
structure with signature
core declaration

value declaration
function declaration
type declaration
datatype declaration
datatype replication
abstype declaration

exception declaration

local declaration

open declaration, n > 1
empty declaration
sequential declaration

infix (left) directive, n > 1
infix (right) directive, n > 1
nonfix directive, n > 1

signature binding
core specification

value specification
abstract type

type abbreviation

abstract equality type
datatype with typbind
datatype replication
exception

local specifications
empty

sequential

infix (left) directive, n > 1
infix (right) directive, n > 1
nonfix directive, n > 1

deprecated

deprecated

o6

o7/

e In Moscow ML, the unitid, if specified in the unit interface or unit implementation, must agree with
the filename (unitid. sig or unitid.snl). In the unit implementation, the name of the constraining
signature, if any, must equal that of the structure.

e The unit implementation syntax cdec is deprecated and is provided only to support code written for
earlier versions of Moscow ML (versions prior to 2.xx). The phrase class cdec is a proper subset of

15

dec and is subject to the same restrictions as dec. The class cdec excludes declarations beginning
with structure, functor, or signature.

e The unit implementation syntax cdec abbreviates structure unitid (:> unitid) = struct cdec
end thus any fixity directives in cdec are local to the structure expression struct cdec end and
are not exported in the interface.

e The unit interface syntax cspec is deprecated and is provided only to support code written for earlier
versions of Moscow ML (versions prior to 2.xx). The phrase class cspec is a proper subset of spec
and is subject to the same restrictions as spec. The class cspec excludes specifications beginning
with structure, functor, signature or include and sharing specifications.

e The unit interface syntax cspec abbreviates signature wunitid = sig cspec end thus any fixity
directives in cspec are local to the signature expression sig cspec end and are not exported in the
interface.

11.2 Syntax and semantics for units compiled in foplevel mode

In toplevel mode, the unit interface in file unitid.sig, if present, must be a Moscow ML specification
(which may itself be a sequence of specifications); the unit implementation in file unitid.sml must be
a Moscow ML declaration (which may itself be a sequence of declarations). The unit interface may be
omitted.

With the batch compiler mosmlc, the files unitid.sig and unitid.sml are compiled in foplevel
mode only if their filenames are preceded by the command line argument -toplevel.

mosmlc -c -toplevel unitid.sig unitid.sml

In the interactive system, a unit interface or implementation may be compiled in foplevel mode using the
function compileToplevel.
The semantics of

- compileToplevel ["unitidy",---,"unitid,"] "unitid.sig"; (* if unitid.sig exists *)
- compileToplevel ["unitidy",---,"unitid,"] "unitid.sml";
- load "unitid";

Provided the compilation of unit.sml issues no warnings (see below), this is equivalent to

- load "unitidy";

- load "unitid,";
- use "unitid.sml";

Note that the unit interface unitid.sig, if present, should not be use’ed in the interactive system.
Unlike the interface of structure-mode unit, which declares a signature, unitid.sig does not contain
a declaration, but merely the specification of the declarations in unitid.sml. The only purpose of the
interface file is to support the separate compilation of units that depend on the unit unitid (for instance,
in the absence of file unit.sml). Since useing the implementation, as opposed to loading the compiled
unit, can potentially (a) declare identifiers that are not specified in the interface, or (b) declare constructors
and exceptions, that are only specified as ordinary values in the interface, and both (a) and (b) may affect
the meaning of subsequent code, when compiling a toplevel-mode implementation against its interface,
Moscow ML will issue warning whenever (a) or (b) occurs.

Toplevel-mode unit implementation (in file unitid.sml)

unitimp = dec declaration

16

Toplevel-mode unit interface (in file unitid.sig)

unitint = spec specification

17

12 Further restrictions imposed for Standard ML compliance

In addition to the syntactic restrictions imposed by Moscow ML, compiling programs in orthodox or
conservative mode (see Section 1), imposes the following additional restrictions. These are required
to ensure compliance with Standard ML.

e Any instance of a Moscow ML phrase that is marked with a plain e in the grammar is illegal
Standard ML.

e Any instance of a Moscow ML phrase that is marked with a e/ in the grammar is illegal Standard
ML unless it satisfies restriction N below:

1. A structure declaration structure strbind may only occur at top level, within the declara-
tions of a structure, or within a declaration local to the declarations of a structure, but not
within a Core let-expression.

2. A functor declaration functor funbind or signature declaration signature sighind may
only occur at the top level of a program, but not within the declarations of a structure or Core
let-expression.

3. In any typbind, datbind, datdesc or typreal, any tyvar occurring within the right side must
occur in the tyvarseq of the left side.

4. A functor application appmodexp atmodexp must be an application of a functor identifier to
a single argument of the form:

funid (modexp) or

funid (dec)
The parenthesised structure expressions (modexp) and (dec), although otherwise illegal
in SML, are legal when occurring as a functor argument.

5. A functor binding must define a one-argument, generative functor, and must have the form:

Sunid (modid : sigexp) { con) = modexp
(and funbind)

6. In a value specification val tyvarseq valdesc, tyvarseq must be empty, so that the specification
is of the form:

val valdesc

7. In a datatype specification datatype datdesc (withtype fypbind) the option must be absent,
so that the specification is of the form:

datatype datdesc

18

13 Built-in types, constructors and exceptions

The following types, constructors, and exceptions are available in the initial environment, of the interac-
tive system as well as files compiled with the batch compiler mosmlc or the compile function.

Built-in types

Type Values Admits equality Constructors and constants
"a array Arrays yes

bool Booleans yes false, true

char Characters yes $"a", #"b", .-

exn Exceptions no

"a frag Quotation fragments if 7 a does QUOTE, ANTIQUOTE
int Integers yes 241, 0xF1, ---

"a list Lists if "a does nil, ::

"a option Optional results if " a does NONE, SOME

order Conqummons yes LESS, EQUAL, GREATER
real Floating-point numbers yes

"a ref References yes ref

string Strings yes

substring Substrings no

unit The empty tuple () yes

"a vector Vectors if " a does

word Words (31-bit) yes 0w241, OwxF1, ---
word8 Bytes (8 bit) yes 0w241, OwxF1, ---

Built-in exception constructors

Bind Chr Domain Div Fail
Match Option

Ord Overflow

19

Graphic Interrupt Io
Size

Subscript SysErr

14 Built-in variables and functions

For each variable or function we list its type and meaning. Some built-in identifiers are overloaded; this is
specified using overloading classes. For instance, an identifier whose type involves the overloading class
realint stands for two functions: one in which realint (in the type) is consistently replaced by int,
and another in which realint is consistently replaced by real. The overloading classes are:

Overloading class | Corresponding base types

realint int, real

wordint int, word, word8

num int, real, word, word8

numt xt int, real, word, word8, char, string

When the context does not otherwise resolve the overloading, it defaults to int.

20

Nonfix identifiers in the initial environment

id type effect exception
~ realint -> realint arithmetic negation Overflow
! "a ref -> 'a dereference

abs realint -> realint absolute value Overflow
app ("a => unit) -> 'a list -> unit apply to all elements

ceil real -> int round towards —+oo Overflow
chr int -> char character with number Chr
concat string list -> string concatenate strings Size
explode string -> char list list of characters in string

false bool logical falsehood

floor real -> int round towards —eo Overflow
foldl ("a*'b->"b)->"b->"a list->'b fold from left to right

foldr ("a*x'b->'b)->'b->"a list->'Db fold from right to left

hd "a list > 'a first element Empty
help string -> unit simple help utility

ignore "a —> unit discard argument

implode char list -> string make string from characters Size
length "a list -> int length of list

map ("a => 'b) -> "a list -> ’'b list map over all elements

nil "a list empty list

not bool -> bool logical negation

null "a list —> bool true if list is empty

ord char -> int number of character

print string -> unit print on standard output

real int -> real int to real

ref "a => 'a ref create reference value

rev "a list -> 'a list reverse list

round real -> int round to nearest integer Overflow
size string -> int length of string

str char -> string create one-character string

substring string * int * int -> string get substring (s, first,len) Subscript
tl 'a list -> ’'a list tail of list Empty
true bool logical truth

trunc real -> int round towards O Overflow
vector "a list -> 'a vector make vector from list Size

21

Infixed identifiers in the initial environment

id type effect exception
Infix precedence 7:
/ real * real -> real floating-point quotient Div, Overflow
div wordint * wordint -> wordint quotient (round towards —eo) Div, Overflow
mod wordint * wordint -> wordint remainder (of div) Div, Overflow
* num * num -> num product Overflow
Infix precedence 6:
+ num * num -> num sum Overflow
- num * num -> num difference Overflow
» string * string -> string concatenate Size
Infix precedence 5:
HE "a * 'a list -> ’a list cons onto list (R)
@ "a list * 'a list -> 'a list append lists (R)
Infix precedence 4:
= "a * "a -> bool equal to
<> "a * "a -> bool not equal to
< numtxt * numtxt -> bool less than
<= numtxt * numtxt -> bool less than or equal to
> numtxt * numtxt -> bool greater than
>= numtxt * numtxt -> bool greater than or equal to
Infix precedence 3:
= "a ref * 'a -> unit assignment
o) ("b->"c) * ("a->'b) -> ('a->'c) function composition

Infix precedence 0:

before 'a * 'b -> 'a

return first argument

22

Built-in functions available only in the interactive system (unit Meta)

id type effect exception
compile string -> unit compile unit (U.sig or U.sml) Fail
(in structure mode)
compileStructure string list —-> In context Uy, ..., Uy, Fail
string -> unit compile unit (U.sig or U.sml)
(in structure mode)
compileToplevel string list -> In context Uy, ..., U,, Fail
string -> unit compile unit (U.sig or U.sml)
(in toplevel mode)
conservative unit -> unit deprecate all Moscow ML extensions
installPP (ppstream->"a->unit) install prettyprinter
-> unit
liberal unit -> unit accept all Moscow ML extensions
load string -> unit load unit U and any units it needs Fail
loaded unit -> string list return list of loaded units
loadOne string -> unit load unit U (only) Fail
loadPath string list ref search path for load, loadOne, use
orthodox unit -> unit reject any Moscow ML extensions
printval a > 'a print value on stdOut
printDepth int ref limit printed data depth
printLength int ref limit printed list and vector length
quietdec bool ref suppress prompt and responses
quit unit -> unit quit the interactive system
quotation bool ref permit quotations in source code
system string -> int execute operating system command
use string -> unit read declarations from file
valuepoly bool ref adopt value polymorphism
verbose bool ref permit feedback from compile

e The Moscow ML Owner’s Manual describes how to use compile, compileStructure,

compileToplevel and load to perform separate compilation, and how to use quotations. Evalu-
ating load U automatically loads any units needed by U, and does nothing if U is already loaded;
whereas 1loadOne U fails if any unit needed by U is not loaded, or if U is already loaded. The
loadPath variable determines where load, loadOne, and use will look for files. The commands
orthodox, conservative and liberal cause Moscow ML to enforce, monitor or ignore compli-
ance to Standard ML.

23

15 List of all library modules

A table of Mosml ML’s predefined library modules is given on page 24. The status of each module is
indicated as follows:

the module belongs to the SML Basis Library.

the module is preloaded by default.

the module is loaded when option -P full is specified.
the module is loaded when option -P n3j93 is specified.
the module is loaded when option -P sm190 is specified.

O = M U w»n

To find more information about the Moscow ML library:

e Typing help "1ib"; in amosml session gives a list of all library modules.

e Typing help "module"; in a mosml session gives information about library module module.

e Typing help "id"; in a mosml session gives information about identifier id, regardless which
library module(s) it is defined in.

e In your Moscow ML installation, consult the library documentation (in printable format):

mosml/doc/mosmllib.ps
mosml/doc/mosmllib.pdf

e In your Moscow ML installation, you may find the same documentation in HTML-format at
mosml/doc/mosmllib/index.html

e On the World Wide Web the same pages are online at
http://www.dina.kvl.dk/~sestoft/mosmllib/index.html

If you do not have the HTML pages, you may download them from the Moscow ML home page.

24

http://www.dina.kvl.dk/~sestoft/mosmllib/index.html

Library module

Description

Status

Array
Array2
Arraysort
BasicIO
Binarymap
Binaryset
BinIO
Bool

Byte
Callback
Char
CharArray
CharVector
CommandLine
Date
Dynarray
Dynlib
FileSys
Gdbm
Gdimage
General
Help

Int
Intmap
Intset
List
ListPair
Listsort
Location
Math

Meta
Mosml
Mosmlcgi
Mosmlcookie
Msp

Mysqgl
NJ93

0s

Option
Path
Polygdbm
Polyhash
Postgres
PP
Process
Random
Real
Regex
Signal
SML90
Socket
Splaymap
Splayset
String
StringCvt
Substring
TextIO
Time
Timer
Unix
Vector
Weak

Word
Word8
Word8Array
Word8Vector

Mutable polymorphic arrays
Two-dimensional arrays

Array sorting (quicksort)

Input-output as in SML 90

Binary tree implementation of finite maps
Binary tree implementation of finite sets
Binary input-output streams (imperative)
Booleans

Conversions between Word8 and Char
Registering ML values for access from C code
Characters

Mutable arrays of characters

Immutable character vectors (that is, strings)
Program name and arguments

From time points to dates and vice versa
Dynamic arrays

Dynamic linking with C

File system interface

Persistent hash tables of strings (GNU gdbm)

Generation of PNG images (Boutell’s GD package)

Various top-level primitives

On-line help

Integer arithmetic and comparisons

Finite maps from integers

Finite sets of integers

Lists

Pairs of lists

List sorting (mergesort)

Error reporting for lexers and parsers
Trigonometric and transcendental functions
Functions specific to the interactive system
Various Moscow ML utilities

Utilities for writing CGI programs
manipulating cookies in CGI programs
Utilities for efficiently generating HTML code
Interface to the MySQL database server
Top-level compatibility with SML/NJ 0.93
Operating system interface

Partial functions

File pathnames

Polymorphic persistent hash tables (GNU gdbm)
Polymorphic hash tables

Interface to the PostgreSQL database server
General prettyprinters

Process interface

Generation of pseudo-random numbers

Real arithmetic and comparisons

Regular expressions as in POSIX 1003.2
Unix signals

Top-level compatibility with 1990 Definition
Interface to sockets

Splay-tree implementation of finite maps
Splay-tree implementation of finite sets
String utilities

Conversion to and from strings

Scanning of substrings

Text input-output streams (imperative)
Time points and durations

Timing operations

Starting concurrent subprocesses under Unix
Immutable vectors

Arrays of weak poir2érs

Unsigned 31-bit integers (‘machine words’)
Unsigned 8-bit integers (bytes)

Mutable arrays of unsigned 8-bit integers
Immutable vectors of unsigned 8-bit integers

SDF
S

DF

0 n nn »n
=)
L e e s |

N n n n
e s B B |

SD
DEFNO
S F

SDENO
S F

S F
SDENO
S F

SDF

0 n nNn n 1 n
=))
s3] L e Lo e e

0 n n n
L I B B |

16 The preloaded library modules

The following libraries are preloaded by default: Array, Char, List, String, TextIO, and Vector. To
load any other library lib, evaluate 1oad "lib" in the interactive system.

Notation in the tables below

f functional argument

n integer

p predicate of type ("a -> bool)
s string

xs,ys | lists

List manipulation functions (module List)

id type effect

@ "a list * 'a list -> ’'a list append

all ("a => bool) -> 'a list —-> bool if p true of all elements
app ("a -> unit) -> 'a list -> unit apply f to all elements
concat "a list list -> ’a list concatenate lists

drop "a list * int -> ’'a list drop n first elements
exists "a —=> bool) -> 'a list -> bool if p true of some element

(
filter ("a => bool) -> "a list -> "a list
find ("a -> bool) -> ’"a list -> 'a option
(
(

foldl a * 'b => 'b) -> 'b -> "a list -> Db
foldr a * 'b => 'b) -> 'b -> "a list -> b
hd "a list -> 'a

last "a list -> 'a

length "a list -> int

map ("a => 'b) -> "a list -> 'b list
mapPartial ('a -> 'b option) -> 'a list -> ’'b list
nth "a list * int -> ’a

null "a list -> bool

partition ("a->bool)->"a list->"a list*'a list
rev "a list -> ’'a list

revAppend "a list * 7a list -> 'a list

tabulate int * (int -> 'a) -> ’a list

take "a list * int -> ’a list

tl "a list -> ’'a list

the elements for which p is true
first element for which p is true
fold from left to right

fold from right to left

first element

last element

number of elements

results of applying f to all elements
list of the non-NONE results of f
n’th element (0-based)

true if list is empty

compute (true for p, false for p)
reverse list

compute (rev xs) Q@ ys
compute [f(0),---, f(n-1)]
take n first elements

tail of list

e For a more detailed description, type help "List"; or see file mosml/1ib/List.sig. The List
module is loaded and partially opened in the initial environment, making the following functions
available: @, app, foldl, foldr, hd, length, map, null, rev, t1.

26

Built-in values and functions for text-mode input/output (module Text I0)

id type effect

closeln instream -> unit close input stream

closeOut outstream -> unit close output stream
endOfStream instream -> bool true if at end of stream
flushOut outstream -> unit flush output to consumer
input instream -> string input some characters

inputl instream -> char option input one character

inputN instream * int -> string input at most n characters
inputAll instream -> string input all available characters
inputLine instream -> string read up to (and including) next end of line
inputNoBlock instream -> string option read, if possible without blocking
lookahead instream -> char option get next char non-destructively
openAppend string -> outstream open file for appending to it
openln string -> instream open file for input

openOut string -> outstream open file for output

output outstream * string -> unit write string to output stream
outputl outstream * char -> unit write character to output stream
print string -> unit write to standard output
stdErr outstream standard error output stream
stdIn instream standard input stream

stdOut outstream standard output stream

e For a more detailed description, see file mosml/1ib/TextI0.sig, or type help "TextIO";.
e For the corresponding structure BinIO for binary (untranslated) input and output, see help "BinIO".

27

String manipulation functions (module St ring)

id type effect

» string * string -> string concatenate strings
collate (char*char->order)->string*string->order compare strings

compare string * string -> order compare strings

concat string list -> string concatenate list of strings
explode string -> char list character list from string
extract string * int * int option -> string get substring or tail
fields (char -> bool) -> string -> string list find (possibly empty) fields
fromCString string -> string option parse C escape sequences
fromString string -> string option parse ML escape sequences
implode char list -> string string from character list
isPrefix string -> string -> bool prefix test

map (char -> char) -> string -> string map over characters
maxSize int maximal size of a string
size string -> int length of string

str char -> string make one-character string
sub string * int -> char n’th character (0-based)
substring string * int * int -> string get substring (s, first,len)
toCString string -> string make C escape sequences
toString string -> string make ML escape sequences
tokens (char -> bool) -> string -> string list find (non-empty) tokens
translate (char -> string) -> string -> string apply f and concatenate

e In addition, the overloaded comparison operators <, <=, >, >= work on strings.
e For a more detailed description, see file mosml/1ib/String.sig, or type help "String";.

28

Vector manipulation functions (module Vector)

Type ' a vector is the type of one-dimensional, immutable, zero-based constant time access vectors with
elements of type ' a. Type ' a vector admits equality if * a does.

id type effect

app ("a -> unit) -> ’a vector -> unit apply f left-right

appi (int * 'a -> unit) -> ’'a vector * int * int option -> unit

concat "a vector list -> ’'a vector concatenate vectors
extract "a vector * int * int option -> 'a vector extract a subvector or tail
foldl ("a * 'b => 'b) -> 'b -> 'a vector -> 'Db fold f left-right

foldli (int * 'a * 'b => 'b) -> 'b -> 'a vector*int*int option -> 'b

foldr ("a * 'b => 'b) => b -> 'a vector —> 'b fold f right-left

foldri (int * 'a * 'b => 'b) -> 'b -> 'a vector*int*int option -> b
fromList ‘'a list -> 'a vector make vector from the list
length "a vector -> int length of the vector
maxLen int maximal vector length
sub "a vector * int -> 'a n’th element (0-based)
tabulate int * (int -> ’a) -> ’'a vector vector of f(0), -, f(n-1)

e For a more detailed description, type help "Vector"; or see file mosml/lib/Vector.sig.

Array manipulation functions (module Array)

Type 'a array is the type of one-dimensional, mutable, zero-based constant time access arrays with
elements of type ’ a. Type 'a array admits equality regardless whether ’ a does.

id type effect

app ("a => unit) -> 'a array -> unit apply f left-right

appi (int * 'a -> unit) -> ’a array * int * int option -> unit

array int * 'a -> 'a array create and initialize array

copy {src : 'a array, si : int, len : int option, copy subarray to subarray
dst : 'a array, di : int} -> unit

copyVec {src : ’'a vector, si : int, len : int option, copy subvector to subarray
dst : 'a array, di : int} -> unit

extract "a array * int * int option -> ’a vector extract subarray to vector

foldl ("a * 'b > 'b) -> 'b -> 'a array > 'b fold left-right

foldli (int * 'a * 'b => 'b) -> 'b -> 'a array * int * int option -> 'Db

foldr ("a * 'b => 'b) -> 'b > 'a array -> 'b fold right-left

foldri (int * Ya * 'b -> 'b) -> 'b -> ’'a array * int * int option -> 'Db

fromList 'a list -> 'a array make array from the list

length "a array -> int length of the array

maxLen int maximal array length

modify ("a => "a) -> "a array -> unit apply f and update

modifyi (int * 'a -> "a) -> ’"a array * int * int option -> unit

sub "a array * int -> 'a n’th element (0-based)

tabulate int * (int -> ’a) -> ’'a array array of f(0),---, f(n-1)

update "a array * int * 'a -> unit set n’th element (0-based)

e For a more detailed description, type help "Array"; or see file mosml/lib/Array.sig. The
Array module is loaded but not opened in the initial environment.

29

Character manipulation functions (module Char)

id type effect exception
chr int -> char from character code to character Chr
compare char * char -> order compare character codes

contains string -> char -> bool contained in string

fromCString string -> char option parse C escape sequence
fromString string -> char option parse SML escape sequence

isAlpha char -> bool alphabetic ASCII character
isAlphaNum char -> bool alphanumeric ASCII character
isAscii char -> bool seven-bit ASCII character

isCntrl char -> bool ASCII control character

isDigit char -> bool decimal digit

isGraph char -> bool printable and visible ASCII
isHexDigit char -> bool hexadecimal digit

isLower char -> bool lower case alphabetic (ASCII)

isPrint char -> bool printable ASCII (including space)
isPunct char -> bool printable, but not space or alphanumeric
isSpace char -> bool space and lay-out (HT, CR, LF, VT, FF)
isUpper char -> bool upper case alphabetic (ASCII)

maxChar char last character (in <= order)

maxOrd int largest character code

minChar char first character (in <= order)
notContains string -> char -> bool notin string

ord char -> int from character to character code

pred char -> char preceding character Chr
succ char -> char succeding character Chr
toLower char -> char convert to lower case (ASCII)
toCString char -> string make C escape sequence

toString char -> string make SML escape sequence

toUpper char -> char convert to upper case (ASCII)

e In addition, the overloaded comparison operators <, <=, >, >= work on the char type.

e For a more detailed description, type help "Char"; or see file mosml/1lib/Char.sig. The Char
module is loaded and partially opened in the initial environment, making the functions chr and ord
available.

30

	Moscow ML's relation to Standard ML
	Reserved words
	Comments
	Special constants
	Identifiers
	Infixed operators
	Notational conventions used in the grammar
	Grammar for the Moscow ML Core language
	Interactive sessions
	Grammar for the Moscow ML Modules language
	Grammar for the Moscow ML Unit language
	Syntax and semantics for units compiled in structure mode
	Syntax and semantics for units compiled in toplevel mode

	Further restrictions imposed for Standard ML compliance
	Built-in types, constructors and exceptions
	Built-in variables and functions
	List of all library modules
	The preloaded library modules

